

EIAR Volume 6: Onshore Infrastructure
Technical Appendices
Appendix 6.5.3-2:
Dublin Array Onshore Site
Investigations

Kish Offshore Wind Ltd.

www.dublinarray-marineplanning.ie

THIRD PARTY COVERSHEET

Project Name	Dublin Array			
Package	Engineering Structural/C	Engineering Structural/Civil		
Document Title	Causeway Geotec - Dubli	n Array Onshore Site Investigat	ions A02	
Classification	Confidential			
Document Date	10 May 2023	Pages (Inc. Cover)	621	
Employer Doc No.	004795437-02	Employer Revision	A02	
Document Status	Preliminary			
Reason for Issue	For Information			

		RWE Revision History			
01	10/05/2023	For Information	RW	SR	DO
RWE Revision	Date	Status / Reason for Issue	Author	Checker	Approver

Dublin Array Onshore Site Investigations

Client: Dublin Array

Client's Representative: GDG

Report No.: 21-1443E

Date: May 2023

Status: Final Report

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	HORITY	5
2	SCOP	'E	5
3	DESC	RIPTION OF SITE	5
4	SITE	OPERATIONS	<i>E</i>
	4.1	Summary of site works	
	4.2	Boreholes	<i>6</i>
	4.3	Dynamic probes	7
	4.4	Standpipe installations	7
	4.5	Trial Pits	8
	4.6	Infiltration tests	9
	4.7	Variable head permeability testing	9
	4.8	Plate load tests	10
	4.9	Surveying	11
	4.10	Groundwater and ground gas monitoring	11
5	LABO	DRATORY WORK	11
	5.1	Geotechnical laboratory testing of soils	11
	5.2	Thermal Resistivity/Hot Box Testing	12
	5.3	Environmental laboratory testing of soils	12
6	GROU	JND CONDITIONS	
	6.1	General geology of the area	
	6.2	Ground types encountered during investigation of the site	
		6.2.1 Shanganagh Cliffs	13
		6.2.2 Ballyogan	
	6.3	Groundwater	14
7	REFE	CRENCES	15

APPENDICES

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Trial pit logs

Appendix E Trial pit photographs
Appendix F Dynamic probe logs
Appendix G Infiltration test results

Appendix H Indirect in-situ CBR test results

Appendix I Geotechnical laboratory test results

Appendix J Environmental laboratory test results

Appendix K SPT hammer energy measurement report

Appendix L Groundwater and ground gas monitoring

Appendix M Variable head test (VHT) results

Document Control Sheet

Report No.:		21-1443E			
Project Title:		Dublin Array Onshore Site Investigations			
Client:		Dublin Array			
Client's Representative:		GDG			
Revision:	A02	Status:	Final Report	Issue Date:	10 th May 2023
Prepared by:		Reviewed by:		Approved by:	
Radiel White			Ross	Jam O 1	~ /·
Rachel White B.A. (Mod.) Geos	science	Sean Ross Darren O'Mahony BSc MSc MIEI PGeo BSc MSc MIEI EurGeol PGeo			

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
$\overline{\nabla}$	Water strike: initial depth of strike.
•	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Dublin Array Onshore Site Investigations

1 **AUTHORITY**

On the instructions of Gavin & Doherty Geosolutions (GDG), ("the Client's Representative"), acting on the behalf of Dublin Array ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of onshore elements of a proposed offshore windfarm.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, soil sampling, environmental sampling, groundwater and ground gas monitoring, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted across two sites in south County Dublin. The landfall site of the project is located at Shanganagh Cliffs in Shankill. It covers an area from the Irish Sea in the east to Clifton Park in the west and is comprised primarily of green areas. The substation location is located immediately west of Carrickmines Retail Park and north of Ballyogan.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 5th September and 7th October 2022, comprised:

- eleven boreholes by sonic drilling methods
- standpipe installation in nine boreholes for groundwater and gas monitoring
- sixteen machine dug trial pits
- an infiltration test performed in six trial pits
- thirteen variable head tests (falling head)
- eight plate load tests.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Eleven boreholes as listed below in Table 1 were put to their completion by a combination of sonic drilling techniques and rotary drilling using Geobor-S methods. The boreholes were completed using a Fraste CRS XL Duo rubber-tracked sonic drilling rig.

Table 1 List of boreholes undertaken as part of the ground investigation

Location	BH ID	Depth (mbgl)
	WP2_BH01	30.00
Shanganah Cliffs	WP2_BH02	30.00
Shanganan Chins	WP2_BH03	30.00
	WP2_BH04	30.00
Ballyogan	WP1_BH01	15.00
	WP1_BH02	15.00
	WP1_BH03	15.00
	WP1_BH04	15.00
	WP1_BH06	10.50
	WP1_BH08	10.50
	WP1_BH10	10.50

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions. Fully cased sonic drilling techniques were employed to advance the boreholes of nominal 180mm diameter to a specific.

The disturbed sonic samples were placed a rigid core liner after which they were photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with BS 5930: 2015: Code of practice for ground investigations.

Environmental samples were taken at suitable depths as instructed by the Client's Representative. Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler (SPT $_{(s)}$) or solid cone attachment (SPT $_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix K.

Geobor-S techniques were used at the location of WP2_BH01 depth below 15m depth due to the extent of very stiff clay, with core recovery in overburden. The core was extracted in up to 1.5m lengths using an SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Dynamic probes

Twenty dynamic probes were conducted adjacent to trial pits at the Ballyogan site to correlate between findings in the trial pits. The probes were undertaken using the DPSHB method as described in BS EN ISO 22476-3:2005+A1:2011. The method entails a 63.5kg hammer falling 0.75m onto a 50.5mm diameter cone with an apex angle of 90° .

Several locations were attempted on more than one occasions due to shallow terminations.

Appendix F provides the dynamic probe logs in the form of plots, against depth, of the number of blows per 100mm penetration.

4.4 Standpipe installations

A groundwater monitoring standpipe and/or gas monitoring standpipe was installed in boreholes as shown below in Table 2.

Table 2 List of standpipe installations completed as part of the ground investigations

Location	BH ID	Standpipe Type	Depth Range (mbgl)
	WP1_BH01	50mm gas standpipe	1.00-2.00
	WP1_BH03	50mm gas standpipe	1.00-2.00
Ballyogan	WP1_BH06	50mm gas standpipe	1.00-2.00
	WP1_BH08	50mm gas standpipe	1.00-2.00
	WP1_BH10	50mm gas standpipe	1.00-2.00
	WP2_BH01	50mm groundwater standpipe	4.50-7.50
	WP2_BH01	50mm gas standpipe	1.00-2.00
	WP2_BH02	50mm groundwater standpipe	12.00-15.00
Shanganah Cliffs	WP2_BH02	50mm gas standpipe	1.00-2.00
Shanganan Chirs	WP2_BH03	50mm groundwater standpipe	8.10-12.00
	WP2_BH03	50mm gas standpipe	2.00-3.00
	WP2_BH04	50mm groundwater standpipe	7.50-9.00
	WP2_BH04	50mm gas standpipe	1.00-2.00

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

In December 2022, standpipes installations in WP2_BH02 and WP2_BH04 were removed at the request of Dún Laoghaire – Rathdown County Council.

4.5 Trial Pits

Sixteen trial pits, as listed below in Table 3 were excavated using a 6t or 13t tracked excavator fitted with a 300 or 600mm wide bucket, to depths up to 4.50m.

Table 3 Trial Pits undertaken as part of the ground investigation

Location	TP ID	Depths (mbgl)
	WP2_TP01	3.50
Shanganah Cliffs	WP2_TP03	3.50
	WP2_TP04	3.40
	WP1_TP01	2.20
Ballyogan	WP1_TP02	3.90
	WP1_TP03	3.60
	WP1_TP04	3.70
	WP1_TP05	3.20
	WP1_TP06	3.50
	WP1_TP07	2.90
	WP1_TP08	4.50

WP1_TP09	2.50
WP1_TP10	3.50
WP1_TP11	3.70
WP1_TP12	3.90
WP1_TP13	1.60

Environmental samples were taken at varying depths in each trial pit.

Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.6 Infiltration tests

An infiltration/soakaway test was carried out at six locations as listed below in Table 4 in accordance with BRE Digest 365 - Soakaways (BRE, 2016). The tests were conducted in similarly numbered trial pits.

Table 4 Soakaway tests undertaken as part of the ground investigation

Location	TP ID
Shanganah Cliffs	WP2_TP04
	WP1_TP03
	WP1_TP04
Ballyogan	WP1_TP06
	WP1_TP10
	WP1_TP11

Appendix G presents the results and analysis of the infiltration test.

4.7 Variable head permeability testing

In-situ permeability tests were carried out across both sites during drilling operations at boreholes as shown in Table 5 below. Testing was carried out in accordance with the guidance as set out in BS EN ISO 22282-2: 2012

Table 5 Summary of VHT's undertaken as part of the ground investigation

Location	BH ID	No of tests
Shanganah Cliffs	WP2_BH01	3
	WP2_BH02	2

	WP2_BH03	1
	WP2_BH04	2
Ballyogan	WP1_BH01	2
Daily Ogail	WP1_BH03	2

The results are presented in Appendix M.

4.8 Plate load tests

Eight plate load tests were carried out at locations listed below in Table 6 in similarly numbered trial pits.

Table 6 Summary of PLT's undertaken as part of the ground investigation

Location	TP ID
	WP1_TP02
	WP1_TP03
	WP1_TP05
Ballyogan	WP1_TP06
Daliyogali	WP1_TP09
	WP1_TP10
	WP1_TP12
	WP1_TP13

The plate load tests were conducted as incremental loading tests in accordance with Clause 4.1 of BS1377: Part 9: 1990 (British Standards Institute, 1990). A 450mm diameter bearing plate was used with five equal loadings to a maximum pressure of approximately 500kPa, followed by unloading. Plate movements were measured using three strain gauges fitted to a remotely fixed tripod frame. Each loading increment was maintained until the plate movement had essentially stopped.

The test results provided in Appendix H are as follows:

• plots of the plate settlements, average of the three gauges, against pressure.

The Modulus of Subgrade Reaction, k, is estimated by applying a "best fit" to the settlement-pressure plots, and is reported in MPa/m. The numerical value represents the pressure, in kPa, on the bearing plate that induces 1.25mm of settlement.

An approximate CBR value was estimated using the guidance provided in the Interim Advice Note 73/06 (Revision 1, 2009) of the Design Guidance for Road Pavement Foundations (Draft HD25). The document provides methods to convert the measured k value to the equivalent for a 762mm diameter plate and the consequent relationship with CBR. This method of estimating an equivalent CBR value is relatively conservative.

4.9 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

4.10 Groundwater and ground gas monitoring

Following completion of site works, groundwater and ground gas monitoring was conducted over several rounds. Ground water monitoring was carried out using a water interface probe. Ground gas measurements were carried out using a GA5000 gas meter. Groundwater monitoring will be completed every three months and gas monitoring every month over the course of a year.

The monitoring records are presented in Appendix L.

One groundwater data logger was installed in WP2_BH03 to monitor groundwater level over several months. Data downloaded has been issued electronically to the client and is not included in this report.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compaction related:** dry density/moisture content relationship
- soil chemistry: BRE Test Suite A and BRE Test Suite C

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).

The test results are presented in Appendix I.

5.2 Thermal Resistivity/Hot Box Testing

Several samples were tested according to ASTM-D5334-14 for thermal resistivity of soil at Celtest's laboratories in Bangor, UK.

Testing comprised of:

- single point testing at optimum moisture content derived from optimum moisture content/dry testing
- five-point testing at varying moisture contents

The results of thermal resistivity are presented in Appendix I.

Further to this several samples were sent to Fugro for testing in their laboratory in Wallingford, UK. Testing comprised:

- moisture content
- bulk density
- · maximum and minimum density of sand
- PSD
- single point thermal resistivity testing in dry, partially saturated and saturated states according to ASTM-D5334-22.

Several samples comprising more granular material were also sent to Soil Environment Services Ltd. For testing in their laboratory in Northumberland in the UK. Testing comprised:

• Thermal Resistivity/Hotbox testing according to BH8990

Results of additional testing in the subcontracted labs are presented in Appendix I.

5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Eurofins, Chemtest at its various laboratories in the UK.

Testing was carried out according to suites set out by the Client's Representative:

- Soil Analysis Suite
- Leachate Analysis Suite
- Inert WAC

Results of environmental laboratory testing are presented in Appendix J.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping from the Geological Survey of Ireland (GSI), indicates superficial deposits underlying Shanganagh Cliff comprise Glacial Till and Alluvium, while the Ballyogan site is underlain by Glacial Till. These deposits are underlain by slates, phyllites and schists of the Maulin Formation at Shanganagh Cliffs and granites at the Ballyogan site.

6.2 Ground types encountered during investigation of the site

6.2.1 Shanganagh Cliffs

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** encountered across the site with a thickness range of 200-300mm.
- Made Ground (fill): reworked sandy gravelly clay/sand/gravel fill encountered across the site to a
 maximum depth of 2.10m in WP2_BH02. Varying amounts of concrete, red brick, plastic, timber,
 rebar and ceramic pipes were encountered within the made ground.
- **Glacial Sands & Gravels**: Loose to dense gravelly silty sand and sandy silty gravel encountered greatest in extent in WP2_BH03 and WP2_BH04 adjacent to the coastline.
- **Glacial Till:** sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth often with lenses of granular material.

6.2.2 Ballyogan

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** encountered across the site with a thickness range of 100-300mm.
- Made Ground (fill): reworked sandy gravelly clay encountered across the site to a maximum depth
 of 3.30m in WP1_TP03. Varying amounts of plastic, red brick, concrete, ducting, rebar, electrical cable
 and timber were encountered within the made ground across the site.
- **Glacial Till:** sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth often with lenses of granular material.
- Bedrock (Granite): Rockhead was encountered at a depth of 11.30m in WP1_BH01

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Obvious groundwater strikes were not encountered during drilling at of the borehole locations. However, it should be noted, sonic drilling utilises a lot of water which likely has masked any groundwater strikes. It should also be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

Groundwater was encountered, during trial pit excavation at depths as shown in Table 7 below.

Table 7 Groundwater strikes encountered during trial pit excavation

GI Ref	Water Level (mbgl)	Comments
WP1_TP03	2.00	Light inflow
WP1_TP04	2.70	Light inflow
WP1_TP06	1.30	Light inflow
WP1_TP10	2.70	Fast inflow

Seasonal variation in groundwater levels should also be factored into design considerations and continued monitoring of the installed standpipes will give an indication of the seasonal variation in groundwater level.

REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

BS EN ISO 22282-2: 2012: Geotechnical investigation and testing. Geohydraulic testing - Part 2: Water permeability tests in a borehole using open systems.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

Project No.: 21-1443E

Dublin Array Offshore Windfarm Client:

Project Name:

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Client's

Gavin and Doherty Geosolutions (GDG) Representative:

Legend Key

Locations By Type - SNC

Locations By Type - TP

Title:

Exploratory Hole Location Plan - Ballyogan

Last Revised: Scale: 04/11/2022

1:1750

Project No.: 21-1443E Client:

Dublin Array Offshore Windfarm

Project Name:

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Client's

Gavin and Doherty Geosolutions (GDG)

Legend Key

Locations By Type - SNC

Locations By Type - TP

Title:

Exploratory Hole Location Plan -Shanganagh Cliffs

Last Revised: Scale: 04/11/2022 1:2000

APPENDIX B
BOREHOLE LOGS

		CAUSE	W/ OTEC	AY CH			ect No. 1443E	Client:	Name: Dublin Array Wind Park - S Dublin Array Offshore Rep: Gavin and Doherty Ge	e Windfarm			Borehole II VP1_BH0
Meth		Plant Used			Base (rdinates	Final De	oth: 15.00 m Start Date: 2	22/09/2022	Oriller: KW	,	Sheet 1 of 2
Sonic D	rilling	Fraste CRS_XL	_ Duo	0.00	15.00	7206	593.11 E 065.27 N						Scale: 1:50
Depth	Sample	/ Field B	Records		Casing War Depth De (m) (ii		Depth	Elevatio	n: 88.87 mOD End Date: 2		.ogger: DC	Water	FINAL
(m)	Tests	rielu N	Necorus		(m) (i	mOD	(m)	Legend	MADE GROUND: Firm brown slightl	•	gravelly silty C		Backiiii
0.50	B1 ES1								with low cobble content. Sand is fin fine to coarse.	e to coarse. Grav	vel is subangu	ılar	0.
.00 .00 .00 - 1.65 .50	B2 ES2 B5 D11 ES3					87.22	1.65				DIAY 'II		1.
.50 - 1.95 .65 - 3.00 .00	B10 ES4	N=40 (6,9/9,11,1	10,10)		1.50				Very stiff greyish brown slightly san medium cobble content. Sand is fin- fine to coarse. Cobbles are subroun	e to coarse. Grav		lar	2.
.00	D13					85.87	3.00	× × 0	Very stiff dark grey slightly sandy sli		AY. Sand is fin	e to	3.
.00 - 4.50 .00 - 3.26	B12	50 (30 for 105mr 155mm)	m/50 for		3.00				coarse. Gravel is subangular fine to	medium.			3.
1.50 1.50 - 6.00 1.50 - 4.89	D14 B15 SPT (S)	50 (5,7/50 for 24	45mm)		4.50	84.37	4.50		Very stiff dark grey slightly sandy sli coarse. Gravel is subangular fine to		AY. Sand is fin	e to	4.
5.00 5.00 - 7.50 5.00 - 6.42	D16 B17 SPT (S)	N=50 (25 for 115mm/12,12,14	4,12)		6.00								6.6.
7.50 7.50 - 9.00 7.50 - 7.84	D18 B19 SPT (S)	50 (9,15/50 for 1	195mm)		7.50	81.37	7.50		Very stiff greyish brown slightly sand medium cobble content. Sand is fin- fine to coarse. Cobbles are subroun	e to coarse. Grav			7.
9.00 9.00 - 10.50 9.00 - 9.17		50 (25 for 95mm	n/50 for 75	5mm)	9.00	79.87	9.00		Very stiff brown slightly gravelly san Gravel is subangular fine to medium		fine to coarse	2.	9.
		er Strikes		Rema	rks								
ruck at (m) Casing	Casing to (I	m) Time (min) Ros		Inspec	tion pit	hand dug t groundwat		encountered	- water added during drilling.				
	Diam (mr	n) From (m) T	To (m) 15.00										
			Ī	Core	Barrel	Flus	h Type	Terminat	on Reason		La	st Updat	ted
						W	ater	Terminate	l at scheduled depth.		(04/05/202	AC

Client's Rep: Gavin and Doberty Geosclutions (GDG)							Proje	ct No.	Project I	Name: Dublin Arra	ay Wind Park	- Stage 1 Onshor	re Site Investig	ations	Borehole II
Method Plant Used Tay (m) Base (n) Coordinates Sonic Drilling Frazz CRS 3L Duo 0.000 13.00 77.06% LTF Frazz CRS 3L Duo 77.06% LTF 72.06% L			CAUSEM	AY			21-1	443E	Client:	Dublin A	rray Offsho	re Windfarm		V	VP1_BH0
Solid Drilling Fractic CRS_VL Duo 0.00 15.00 70.00557 N Final Depth: 25.00 m Start Date: 22.009/0022 Opinion: NW Solid: 15.00 FinAl Received 77.857 78.30 Final Depth: 25.00 m Start Date: 22.009/0022 Opinion: NW Solid: 15.00 FinAl Received 77.857 78.30 Final Depth: 25.00 m Start Date: 22.009/0022 Opinion: NW Solid: 15.00 FinAl Received 77.857 FinAl Received 77.857 78.30 Final Depth: 25.00 m Start Date: 22.009/0022 Opinion: NW Solid: 15.00 FinAl Received 77.857 FinA			——GEOT	ECH					Client's	Rep: Gavin an	d Doherty (Geosolutions	(GDG)		
T240%-27 N Several Several T240%-27 N Several Sev					_				Final Dep	th: 15.00 m	Start Date:	22/09/2022	Driller: KV	/	Sheet 2 of 2 Scale: 1:50
No. 15.00									Elevation	: 88.87 mOD	End Date:	26/09/2022	Logger: DC	:	FINAL
1.00 12.50 1.50			Field Records	1	Casing Depth (m)	Water Depth (m)			Legend	1	Desc	cription		Water	Backfill
Water Strikes truck at (m) Casing to (m) Time (min) Rose to (m) Casing Details To (m) Diam (mm) From (m) To (m) 15.00 177 1.20 15.00 Remarks Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling.	(m) 10.00 10.50 - 10.60 11.00 11.30 - 12.50	D22 SPT (S) D23 B24				Water Depth (m)	78.37 77.57	10.50		Dense greyish brow of granite. Sand is fine Strong light whitish on joint surfaces. Discontinuities:	htly gravelly s. fine to mediu n sandy clayer ne to coarse. grey GRANITE s, closely spac staining on joi	andy CLAY. Sand um. y subangular fine Sightly weather ed (40/150/300) nt surfaces.	e to coarse GRA ered: discolour	e. WEL	Backfill 9.5 10.6 10.6 11.6
Tuck at (m) Casing to (m) Time (min) Rose to (m) Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling. Casing Details Water Added To (m) Diam (mm) From (m) To (m) 15.00 177 1.20 15.00															
Casing Details Water Added To (m) Diam (mm) From (m) To (m) 15.00 177 1.20 15.00	,								I						
	Casing De	etails am (mm	Water Added) From (m) To (m)	No no					ncountered -	water added during	g drilling.				
Last Updated	15.00	177	1.20 15.00		a Parr	اه	Eluch '	Type	Tormination	on Reason			1.	oct I Indo	ted -
Water Terminated at scheduled depth. 04/05/2023				Core	- parr	eı									

						Proje	ct No.	Project	: Name: Dublin Arr	ay Wind Park	- Stage 1 Onsho	re Site Inv	estigations	В	orehole	: ID
	C	AUSEW	AY			21-1	443E	Client:	Dublin A	rray Offsho	re Windfarm			w	'P1_BH	102
		——GEOTI	ECH					Client's	s Rep: Gavin an	d Doherty	Geosolutions	(GDG)				
Metho	od	Plant Used	Top (m)	Base	(m)	Coord	inates				25/22/222		10.11	S	heet 1 o	of 2
Sonic Dr	illing	Fraste CRS_XL Duo	0.00	10.0	00	72074	7.59 E	Final De	epth: 15.00 m	Start Date:	26/09/2022	Driller:	KW	:	Scale: 1:	50
							4.86 N	Elevatio	on: 88.74 mOD	End Date:	27/09/2022	Logger:	DC		FINAL	_
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfill	
									MADE GROUND: Fir with medium cobbl							
.50	B1						-		Gravel is subangula	r fine to coars	e.					0.5
.50	ES1					07.04	0.00									
.00	В3					87.94	0.80		MADE GROUND: Br			to coarse S	SAND.			1.0
.00	ES2						ŧ		Gravel is subangula	r line to coars	e.					
FO 2.20	D.7					07.24	1.50									
.50 - 2.20 .50 - 1.95	B7 SPT (S)	N=23 (2,5/7,4,5,7)		1.50		87.24	1.50		Medium dense grey low cobble content.							1.5
							Ē		low copple content.	. Sand is time t	o coarse. Cobbie	s are subr	ounaea.			
20 2.50	Do					QC F 4	2 20									2.0
.20 - 2.60	B8					86.54	2.20		Medium dense brow		e to coarse SANI	D. Gravel is	S			I
.50 .60 - 3.00	ES3 B9					86.14	2.60		,		ravally sands C	V C~~-1:	fino to			2.5
.00 3.00	53						Ė		Very stiff greyish bro coarse. Gravel is sub			ar. Sand IS	iine to			1
.00	D11						Ė									3.0
.00 .00 - 4.50	ES4 B10						E									1
00 - 3.45	SPT (S)	N=37 (4,8/8,9,9,11)		3.00			Ė									3.5
																İ
																4.0
							Ē									
50	D12					84.24	4.50									4.5
.50 - 6.00	B13	/ /							Very stiff dark brow low cobble content.							i
.50 - 4.95	SPI (S)	N=35 (6,7/7,8,10,10)		4.50					to coarse. Cobbles a			Ü				5.0
																3.0
							Ē									
							Ē									5.5
.00 .00 - 7.50	D14 B15															6.0
.00 - 6.26		50 (25 for 95mm/50 fo	r 160mm)	6.00												l
							Ė									6.5
							Ē									l
							E									7.0
							Ė	a 00 a								1
50	D16						ŧ	a 00 a								7.5
.50 - 7.85 .80 - 8.30	SPT (S) B18	50 (9,16/50 for 200mm	1)	7.50		80.94	7.80	a .00 a								1
0.30	210					50.34	F 7.80	0 X	Grey COBBLES with	some silty sar	ndy gravel.					8.0
20 000	D17					00 44	0.20	% X O = 0								
.30 - 9.00	B17					80.44	8.30	× × 0.	Very stiff brown slig coarse. Gravel is sub			Y. Sand is	fine to			8.5
							Ē	× × 0	coaise. Graver is sub	vangular TITE 1	o medium.					1
.00	D19					79.74	9.00	× × 0.								۵٥
.00 - 10.50	B20					13.14	9.00		Very stiff brown slig coarse. Gravel is sub			Y. Sand is	fine to			9.0
.00 - 9.32	SPT (S)	50 (9,12/50 for 165mm	n)	9.00					Jourse, Graver is Sul	anaca mie	co medium.					1
		Strikes	Rema	rks												
uck at (m) C	asing to (m) Time (min) Rose to (r				d dug to : undwater		ncountered	d - water added durin	g drilling.						
Casing D	etails	Water Added														
To (m) D	iam (mm) From (m) To (m)														
15.00	177	1.20 15.00		D .		e	 . T	T	۲ -				1	al a d		_
			Core	Barre	91	Flush	ıype	Terminat	tion Reason				Last Up	date	d	
		l l			- 1								04/05/2			ج.

Metho	/ –	CAUSEW GEOTE	AY CH	Base	e (m)	Proje 21-1 Coord	443E	Client:	Rep: Gavin an	rray Offshoi d Doherty (re Windfarm Geosolutions	(GDG)	w	/P1_BH	
Sonic Dril	ling	Fraste CRS_XL Duo	0.00	10	.00	72074 72404	7.59 E 4.86 N	Final De	•		26/09/2022 27/09/2022	Driller: KW Logger: DC		Scale: 1:5	
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription		Water	Backfill	
									Very stiff brown slig coarse. Gravel is sul			AY. Sand is fine to			9.5 -
0.50 0.50 - 11.50 0.50 - 10.85	D21 B22 SPT (S)	50 (8,12/50 for 200mm)	10.5		78.24	10.50		Very stiff brown slig cobble content. San coarse. Cobbles are	d is fine to coa					11.0 —
1.50 - 11.85 1.85 - 12.00	B27 B28					77.24 76.89	11.50		Very stiff brownish a medium cobble con fine to coarse. Cobb	tent. Sand is fi	ne to coarse. Gr				11.5
.2.00 .2.00 - 12.50 .2.00 - 12.35 .2.50 - 13.50	SPT (S)	50 (9,12/50 for 200mm)	12.0		76.74 76.24	12.00		Very stiff light brow coarse. Gravel is sub Very stiff brown slig content. Sand is fine	n slightly grave bangular fine t htly sandy slig	elly sandy CLAY. o medium. htly gravelly CLA	AY with low cobble			12.0
						, 3.27			fine to coarse. Cobb Dense grey gravelly coarse. (Possible we	les are subrou fine to coarse	nded. SAND. Gravel is		0		13.0 -
3.50 - 15.00	B25					75.24	13.50		Whitish grey BOULD	DER of granite.	(Probable bedro	ock)			13.5 14.0 -
						74.24	14.50		Stiff grey slightly sa	ndy silty CLAY.	Sand is fine to n	nedium.	_		14.5
						73.74	15.00	<u>×</u> ->		End of Borel	nole at 15.00m		_		15.0 -
															15.5 16.0 -
															16.5
															17.0 -
															17.5
															18.0 -
													<u> </u>		18.5
ruck at (m) Ca		Strikes Time (min) Rose to (m		tion p		nd dug to : oundwater		ncountered	l - water added durin _i	g drilling.					
Casing De To (m) Di 15.00	etails am (mm) 177	Water Added From (m) To (m) 1.20 15.00	_												
			Core	Barı	rel	Flush	Туре	Terminat	ion Reason			Last	Update	ed	J

		CAUSE	W OTE	AY ECH			Projec 21-1		Client's		rray Offsho	- Stage 1 Onshor re Windfarm Geosolutions		eugaπons		orehol	
Meth		Plant Used		Top (m)	_		Coord	inates	Final De	pth: 15.00 m	Start Date:	29/09/2022	Driller:	KW		heet 1	
Sonic D	rilling	Fraste CRS_XL	Duo	0.00	10.	00	72081 72403	9.24 E 4.16 N	Elevatio			30/09/2022	Logger:		S	FINA	
Depth (m)	Sample / Tests	Field Re	ecords		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Des	cription			Water	Backfill	Τ
0.50 0.50	B1 ES1				()	(11)	illos			MADE GROUND: So occasional rootlets content. Sand is fine	and brick frag	ments with low o	cobble and b	oulder	N		0.5
1.00 1.00	B2 ES2																1.0 -
1.50 1.50 - 3.00 1.50 - 1.95 2.00	ES3 B3 SPT (S) ES4	N=24 (2,4/4,5,8,7	7)		1.50		86.89	1.50		Stiff greyish brown cobble content. San subrounded fine to	nd is fine to co	arse. Gravel is su	bangular to				2.0 -
2.50	ES5																2.5
3.00 3.00 3.00 - 4.50 3.00 - 3.45	D8 ES6 B4 SPT (S)	N=41 (6,7/9,10,1	0,12)		3.00		85.39	3.00		Very stiff brownish a fine to coarse. Grav							3.0 -
4.50 4.50 - 6.00 4.50 - 4.95	D7 B5 SPT (S)	N=47 (9,10/12,12	2,13,10))	4.50												4.5
5.00 5.00 - 7.50 5.00 - 6.00		50 (25 for 0mm/!	50 for (Omm)	6.00												6.0
7.50 7.50 - 9.00 7.50 - 7.76	D10 B11 SPT (S)	50 (25 for 105mn 150mm)	m/50 fc	or	7.50		80.89	7.50		Very stiff greyish brook to be content. Subrounded fine to	. Sand is fine t	o coarse. Gravel	is subangula				7.0 - 7.5 8.0 -
9.00 9.00 - 10.50 9.00 - 9.24		50 (25 for 85mm,	/50 for	· 150mm)	9.00		79.39	9.00		Very stiff brown slig cobble content. San subrounded fine to	nd is fine to co	arse. Gravel is su	bangular to				9.0
		r Strikes		Rema				1	ı								
Casing To (m)	Details Diam (mm		ded o (m)				nd dug to 1		ncountered	l - water added durin _i	g drilling.						
15.00	177	1.20	15.00	Core	Barr	el	Flush	Туре	Terminat	ion Reason				Last Up	date	d T	
							Wat	er	Terminate	d at scheduled depth	ı.			04/05/	2023		Ġ

		CAUSEN	/AY			Proje	ct No. 443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		stigations		oreho 'P1_E	
Metho	d	Plant Used	Top (m)	Base	(m)	Coord	inates							S	heet 2	of 2
Sonic Dril	lling	Fraste CRS_XL Duo			.00	72081	9.24 E	Final Dep	oth: 15.00 m	Start Date:	29/09/2022	Driller:	KW	:	Scale:	1:50
						72403	4.16 N	Elevation	1: 88.39 mOD	End Date:	30/09/2022	Logger:	DC		FINA	λL
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfi	II
0.50 0.50 - 12.00 0.50 - 10.74		50 (25 for 85mm/50 fc	or 160mm)	10.5		77.89	10.50		Very stiff brown slig cobble content. San subrounded fine to Dense brown gravel Gravel is subangular	d is fine to co coarse. Cobbl	arse. Gravel is su es are subround rse SAND with lo	ibangular to ed. w cobble co)			9.5 10.0 - 10.5 11.0 -
2.00 2.00 - 13.50 2.00 - 12.04		50 (25 for 10mm/50 fc	or 25mm)	12.0		76.39	12.00		Very dense brown v is subrounded fine t		ery silty fine to c	oarse SAND	. Gravel			12.0 - 12.5
3.50 3.50 - 14.80 3.50 - 13.68		50 (25 for 95mm/50 fc	or 85mm)	13.5		74.89	13.50		Very stiff brown slig Gravel is subangular			is fine to co	parse.			13.5 14.0 -
4.80 - 15.00						73.59	14.80	. — — X X X 2 X X	Grey slightly gravelly	y silty fine to	coarse SAND. Gra	avel is suba	ngular	_		
5.00		r Strikes	Rema	ırks		73.39	15.00		fine to medium.	End of Bore	hole at 15.00m					15.5 16.0 · 16.5 17.0 · 17.5
uck at (m) Ca		n) Time (min) Rose to (m) Inspec	tion p		id dug to :		ncountered	- water added during	a drilling						
Casing De To (m) Di 15.00	etails iam (mm 177	Water Added To (m) To (m) 1.20 15.00		uceat	ne gro	undwater	strikes e	ncountered	- water added durinį	g arıılıng.						
		15.00		Barı	el	Flush	Туре	Terminati	on Reason				Last Up	date	ed	
						Wat	er	Terminated	d at scheduled depth				04/05/	2023		\GS

		CAUSEW	AY			Project N 21-1443		Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations		orehole P1_BH	
Metho		Plant Used	Top (m)	_		Coordinat	tes	Final De	•		30/09/2022	Driller:	K/V/	S	heet 1 of	f 2
Sonic Dri	lling	Fraste CRS_XL Duo	0.00	10.0	7	720931.51 724033.50		Elevation			30/09/2022	Logger:		:	Scale: 1:5	
Depth (m)	Sample / Tests	Field Records		Casing V Depth D (m)			epth (m)	Legend	1	Desc	cription		1	Water	Backfill	
0.50 0.50	B1 ES1 B2 ES2			(m)	(m)		(III)		MADE GROUND: So cobble and boulder and plastic fragmen to coarse.	content with	frequent rootlet	s brick frag	ments	8		0.5
1.50 1.50 1.50 1.50 1.50 - 3.00 1.50 - 1.95 2.00	B3 D11 ES3 B4	N=27 (2,3/4,6,7,10)		1.50	85	5.42 1	1.50		Stiff brown slightly is fine to coarse. Grasubrounded.							2.0 -
3.00 3.00 3.00 - 4.50 3.00 - 3.45	D12 ES6 B16 SPT (S)	N=39 (5,8/7,9,9,14)		3.00	83	3.92 - 3	3.00		Very stiff greyish bromedium cobble confine to coarse. Cobb	itent. Sand is f	ine to coarse. Gr					3.5
1.50 1.50 - 4.88	D13 SPT (S)	50 (10,14/50 for 225mi	m)	4.50												4.5 5.0 -
5.00 5.00 - 7.50 5.00 - 6.03	D14 B17 SPT (S)	50 (25 for 20mm/50 for	r 10mm)	6.00	80	0.92 - 6	5.00		Very stiff brown slig coarse. Gravel is sub			Y. Sand is f	ine to			6.0 -
7.50 7.50 - 9.00 7.50 - 7.74	D15 B18 SPT (S)	50 (25 for 85mm/50 for	r 150mm)	7.50	79	9.42 7	7.50		Very stiff greyish brofine to coarse. Grav				Sand is			7.0 -
9.00 9.00 - 10.50 9.00 - 9.30		50 (10,15/50 for 150mi	_	9.00												9.0 -
ruck at (m) Ca		r Strikes n) Time (min) Rose to (n	n) Rema		hand d	ug to 1.20	m.									
Casing De To (m) Di 15.00 Image: Control of the control o	etails iam (mm 177	Water Added From (m) To (m) 1.20 15.00						ncountered	- water added durin	g drilling.						
			Core	Barre	F	lush Typ	е	Terminati	ion Reason				Last Up	date	d	J
						Water		Terminated	d at scheduled depth				04/05/	2023	A	ıŢ.

		CAUSE	W atc	AY ECH			21-1	ct No. 443E	Project Client: Client's	Dublin A	•	re Windfarm Geosolutions	(GDG)			/P1_B	le ID 8 H0 4
Metho		Plant Used		Top (m 0.00	_		Coord	inates	Final De	pth: 15.00 m	Start Date:	30/09/2022	Driller:	KW	1	Sheet 2	
Sonic Dril	ıırıg	Fraste CRS_XL	Duo	0.00	10	.00	72093 72403	1.51 E 3.50 N	Elevatio			30/09/2022	Logger:			Scale: 1	
Depth (m)	Sample / Tests	Field Re	ecords		Casing Depth	Water Depth	Level mOD	Depth (m)	Legend		Des	cription		1	Vater	Backfill	
(m) 0.50 0.50 - 12.00 0.50 - 10.76 2.00 2.00 - 12.00 2.70 - 15.00	D20 B22 SPT (S) D23 SPT (S)	50 (25 for 110mm 150mm) 50 (25 for 0mm/5	n/50 fc)mm)	10.5 12.0		76.42	10.50	Legend	Very stiff greyish brifine to coarse. Grave Very stiff brown slig content. Sand is fine Cobbles are subrout Very stiff brown slig coarse. Gravel is sulfactories.	own slightly si el is subangul thtly sandy slig e to coarse. Gi nded.	andy slightly grav ar fine to coarse. thtly gravelly CLA avel is subangula	Y with low ar fine to c	r cobble oarse.	Water	Backfill	9.5 10.0 - 10.5 11.0 - 12.5 13.5 14.0 - 15.5 16.0 - 16.5
Casing De	sing to (m			No no	ction poticeab	ole gro		strikes e		- water added durin	g drilling.			l act I In		ad 🔳	17.5
1				Cor	e Barı	eı	Flush	ıype	ierminat	ion Reason				Last Up	uate	.u	

		CAUSEV	VAY			ect No. 1443E	Client:	Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Dublin Array Offshore Windfarm WP1_BH06
	0						Client's	
Met Sonic D		Plant Used Fraste CRS_XL Duc	Top (m)	10.50		dinates	Final De	pth: 10.50 m Start Date: 26/09/2022 Driller: KW Sheet 1 of 2 Scale: 1:50
	J	_				32.44 E 45.25 N	Elevation	
Depth (m)	Sample / Tests	Field Record	ls	Casing Wa Depth De (m) (r	tter Level	Depth (m)	Legend	Description Backfill
0.50 0.50 1.00 1.00	B1 ES1 B3 ES2							MADE GROUND: Firm brown slightly sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is subrounded fine to coarse.
1.50 1.50 1.50 - 3.00 1.50 - 1.95 2.00	D13 ES3 B9	N=40 (2,5/8,10,12,10)	1.50	87.30	1.50	X X X	Very stiff dark brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.
2.50	ES5						× × ×	2.5 -
3.00 3.00 3.00 - 4.50 3.00 - 3.38		50 (8,12/50 for 225m	m)	3.00	85.80	3.00	× × × × × × × × × × × × × × × × × × ×	Very stiff greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. 3.5 -
1.50 1.50 - 6.00 1.50 - 4.82		50 (9,10/50 for 170m	m)	4.50	84.30	4.50		Very stiff greyish brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.
5.00 5.00 - 7.25 5.00 - 6.38		50 (9,11/50 for 225m	m)	6.00	82.80	6.00		Dense grey sandy subangular fine to coarse GRAVEL. Sand is fine to coarse.
7.25 - 7.50 7.50 7.50 - 9.00 7.50 - 7.88	D18 B19	50 (10,15/50 for 230)	nm)	7.50	81.55 81.30	7.25		Very stiff greyish brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Very stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.
9.00 9.00 - 9.30 9.00 - 9.45		N=34 (6,5/7,9,8,10)		9.00	79.80	9.00	× × ×	Dense greyish brown silty gravelly fine to coarse SAND. Gravel is subangular fine to medium.
ruck at (m)		r Strikes n) Time (min) Rose to	(m) Inspec		hand di	1 20		
Casing To (m)	Details Diam (mm	Water Added) From (m) To (m	No no		hand dug to groundwate		encountered	- water added during drilling.
10.50	177	1.20 10.50		Barrel	Flush	туре	Terminati	ion Reason Last Updated
	1		55.0			, 15 -		

	C	AUSE	W. STE	AY CH				ct No. 443E	Client:		rray Offsho	re Windfarm		stigations		orehole II P1_BH0
NA-AL	-d				D	11	C===-1	inata-	Client's	Rep: Gavin an	d Doherty (Geosolutions	(GDG)			h
Metho Sonic Dri		Plant Used Fraste CRS_XL		Top (m) 0.00		: (m) .50		inates	Final De	pth: 10.50 m	Start Date:	26/09/2022	Driller:	KW	ı	heet 2 of 2 Scale: 1:50
							72073 72404	2.44 E 5.25 N	Elevation	1: 88.80 mOD	End Date:	26/09/2022	Logger:	DC		FINAL
Depth (m)	Sample / Tests	Field Re	ecords		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Des	cription	'		Water	Backfill
.30 - 9.90	B22								×××	Dense greyish brow subangular fine to n	n silty gravelly nedium.	fine to coarse S	AND. Grave	lis		9.5
									×. × . ×	3						
.90 - 10.50	B23								××××							10.0
									×.×.×							
0.50	D24						78.30	10.50	×.×.×		End of Bore	hole at 10.50m				10.5
											Life of Bore	note at 10.50m				
																11.0
																11.5
								-								12.0
																12.5
								-								13.0
																13.5
																14.0
																14.5
																15.0
																15.5
																16.0
																16.5
																17.0
																17.5
								<u> </u>								18.0
								<u> </u>								18.5
	Water	Strikes		Rema	rks											
uck at (m) Ca		Time (min) Rose	e to (m	Inspec	tion p		d dug to :									
									ncountered	- water added during	g drilling.					
				1												
Casing D		Water Add		-												
To (m) D 10.50	iam (mm) 177		o (m) 10.50	1												
				Core	Barı	rel	Flush	Гуре	Terminati	on Reason				Last Up	date	d
							Wat			d at scheduled depth				04/05/	12022	4.0

			EOTI	ECH			.443E	Client: Client's F	v	WP1_BH08					
Method Sonic Drilling		Plant U		Top (m) 0.00	Base (r 10.00		dinates	Final Dep	th: 10.50 m	Start Date: 01/10/2022	Driller: KW	,	Sheet 1 of 2 Scale: 1:50		
Depth Sam			_			72087	70.40 E 16.62 N	Elevation	: 88.50 mOD	End Date: 01/10/2022	Logger: DC		FINAL		
	Sample Tests	/ Fie	eld Records		Casing Wat Depth Dep (m) (m	Level mOD	Depth (m)	Legend		Description		Water	Backfill		
0.50 0.50 0.00 0.00	B1 ES1 B2 ES2					- XXXXXX 0	MADE GROUND: So cobble content bric coarse. Gravel is sub		0.5						
50 50 50 50 - 1.95 !.00	ES4 B4	N=26 (2,8/7,	6,6,7)		1.50	86.50	2.00		Dense brown gravel to medium.	lly fine to coarse SAND. Gravel	is subrounded	fine	2.0		
2.50 2.50 - 3.00	ES5 B5					86.00	2.50			sandy gravelly silty CLAY. Sand in to subrounded fine to coarse.		e.	2.5		
3.00 3.00 3.00 - 4.50 3.00 - 3.45		N=36 (3,7/7,9,10,10) 3.00				85.50	3.00	0 0 0 C		slightly sandy slightly gravelly (id is fine to coarse. Gravel is su subrounded.		0	3.5 4.0		
1.50 1.50 - 6.00 1.50 - 4.88		50 (12,13/50	for 225m	m)	4.50								4.5 5.0 5.5		
5.00 5.00 - 7.50 5.00 - 6.00		50 (25 for 0m	nm/50 for	0mm)	6.00	82.50	6.00			slightly sandy slightly gravelly (pangular fine to coarse.	CLAY. Sand is fir	ne to	6.0		
7.50 7.50 - 9.00 7.50 - 7.50		50 (25 for 0m	50 (25 for 0mm/50 for 0mm) 7.50				7.50	00000	cobble content. San	own slightly sandy gravelly silty Id is fine to coarse. Gravel is su coarse. Cobbles are subrounde	bangular to	,	7.0 7.5 8.0		
9.00 9.00 - 10.50 9.00 - 9.10		50 (25 for 85	mm/50 fo	r 10mm)	9.00		-						9.0		
ruck s±/ \		er Strikes	Poss +- /	Rema			4.00	<u> </u>				4.5 —			
Casing To (m)	Details Diam (mr	n) From (m)	Added To (m)			nand dug to groundwate		encountered -	water added durin	g drilling.					
10.50	177	1.20	10.50	Core	Barrel	Flush	Туре	Terminatio	on Reason		La	st Updat	ed 🔳		
					Core parrer		iter		Termination Reason Last Up Terminated at scheduled depth. 04/05						

	d	Plant Used	OTE	CAUSEWAY						D 11: 4	O.C. I	\ \ /: £			WI	P1_BH0	
Sonic Dril			CAUSEWAY ——GEOTECH							Client: Dublin Array Offshore Windfarm							
Sonic Dril		Plant Use							Client's	Rep: Gavin an	d Doherty (Geosolutions	(GDG)				
Depth (m)	Method Sonic Drilling		d Duo	Top (m) 0.00	Base		Coord		Final Depth: 10.50 m Start Date: 01/10/2022			Driller: KW	Sheet 2 o				
Depth Sampl (m) Tests							720870.40 E 724016.62 N		Elevation	n: 88.50 mOD	End Date:	01/10/2022	Logger: [OC .		FINAL	
(111)	Sample /	Field R	Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend	-	Desc	cription			Water	Backfill	
	iests				(m)	(m)	IIIOD	,	A 000 0	Very stiff greyish bro	own slightly sa	andy gravelly silty	CLAY with I	ow	>	9.5	
0.50	D23						78.00	10.50			End of Bore	hole at 10.50m				10.5 11.0 11.5 12.6 13.5	
																14.5	
																15.0	
								_								16.0	
																16.5	
																17.0	
																17.5	
								_								18.0	
																18.5	
	Water	Strikes		Rema	ırks												
ick at (m) Cas		Time (min) Ros	se to (m) Inspec	tion p		d dug to 1 undwater		ncountered	- water added during	g drilling.						
						5 -			2		. 0						
Casing De		Water Add	ded														
			To (m) 10.50	-													
10.30	1//	1.20	10.50	Core	Barr	el	Flush 1	vpe	Terminati	on Reason			T	Last Up	date	d = -	
					. Juil		Wate			l at scheduled depth				04/05/2			

		CAUS	EW	AY			Project		Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Client: Dublin Array Offshore Windfarm Client's Rep: Gavin and Doherty Geosolutions (GDG)								S Borehole ID WP1_BH10					
					op (m) Base (m)		Coordinates		Final Depth: 10.50 m Start Date: 27/09/2022 Driller: KW								of 2					
		Fraste CRS	_XL Duo	0.00	10.0	00	72090 72399	5.54 E 7.04 N	Elevatio		End Date: 28/09/2022 Logger				Scale: 1:50 FINAL							
	Sample /	Fie	eld Records		Casing 1 Depth 1 (m)	Water Depth (m)	Level mOD	Depth	Legend		Des	cription			Water	Backfill	Т					
).50).50).50 l.00	B1 ES1 B3 ES2					(m)		(m)		MADE GROUND: Soft brown slightly sandy slightly gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular.							0.5					
1.50 - 1.95		N=24 (2,3/5,		1.50		86.93	1.50		Stiff greyish brown content. Sand is fine Cobbles are subrou	e to coarse. G						1.5						
2.30 - 3.00 2.50	B6 ES3																2.5					
3.00 3.00 - 4.50 3.00 - 3.45	ES4 B7 SPT (S)	N=47 (4,10/7,4,19,17) 3.00					85.43	3.00		Very stiff dark grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subrounded.							3.5					
4.50 4.50 - 6.00 4.50 - 4.80	D10 B9 SPT (S)	50 (8,17/50 for 150mm) 4.50					83.93	4.50		Very stiff dark grey medium cobble con fine to coarse. Cobb	itent. Sand is f	ine to coarse. Gr					4.5					
5.00 5.00 - 7.50 5.00 - 6.20	D11 B12 SPT (S)	50 (25 for 80	mm/50 fo	r 125mm)	6.00		82.43	6.00		Very stiff greyish brocobble content. San subrounded fine to	d is fine to co	arse. Gravel is su	bangular to				6.0					
7.50 7.50 - 9.00 7.50 - 7.76	D13 B14 SPT (S)	50 (25 for 95mm/50 for 160mm) 7.50				80.93	7.50			itent. Sand is f	ine to coarse. Gr	avel is suba				7.0 - 7.5 8.0 - 8.5						
7.50 - 7.76 SPT (S)						arse. Gravel is su	bangular to				9.0											
rugly =+ / \l.			Poss t- '	-																		
Casing I	Details Diam (mm	Water	Added To (m)						encountered	- water added durin	g drilling.											
10.50	177	1.20	10.50	Core	Barre	1	Flush	Туре	Terminat	ion Reason				Last Up	date	d T						
							Wat		Terminated at scheduled depth. 04/05,								Ŕ					

CAUSEWAY ——GEOTECH Method Plant Used Top (m) Base (m)							ct No.	Project			ehole II						
						21-1	443E	Client:	'	WP1_BH10							
									Client's	Rep: Gavin an	d Doherty	Geosolutions	(GDG)				_
Method Sonic Drilling		Plant Used Fraste CRS_XL Du		op (m) 0.00		(m) .00		inates	Final Depth: 10.50 m Start Date: 27/09/2022			Driller: KW	N	Sheet 2 Scale: 1			
							720905.54 E 723997.04 N		Elevatio	n: 88.43 mOD	End Date:	28/09/2022	Logger: D	С		INAL	_
Depth Sample / (m) Tests		Field Reco	rds		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Des	cription			Water	ackfill	_
(/	1333				()	, <i>,</i>		,	24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Very stiff greyish bro	own slightly sa	andy gravelly silt	/ CLAY with lo		>	9.	9.5
										subrounded fine to							
0.00 - 10.04	SPT (S)	50 (25 for 20mm/50) for 2	!5mm)	10.0											10.	0.0
	(-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,													
).50	D16						77.93	10.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E. J. D.	h . l t 40 50				10.	0.5
							-	<u> </u>			⊏nd of Bore	hole at 10.50m					
								Ė								11.	1.0
								Ė									
								Ė.								11.	1.5
								Ė									
								<u> </u>								12.	2.0
								Ė.									
								Ė								12.	2.5
								Ė									
								-								13.	3.0
								Ė E									
								<u> </u>								13.	3.5
																14.	4.0
																14.	4.5
								Ē									
																15.	5.0
								Ė									
								Ė								15.	5.5
								Ė									
																16.	6.0
								<u> </u>								16.	6.5
								Ē									
								-								17.	7.0
								E									
								Ė								17.	7.5
								<u> </u>									
								<u> </u>								18.	3.0
								Ē									
								<u> </u>								18.	3.5
	Mata	· Strikes		Rema	rles												_
ck at (m) Ca		Time (min) Rose to	o (m)	1		oit har	nd dug to	1.20m.									
									ncountered	- water added during	g drilling.						
Casing De		Water Added															
To (m) Di 10.50	iam (mm 177	1.20 To (
				Core	Barı	rel	Flush	Туре	Terminat	ion Reason			L	ast Upda	ted		Ī
							Wat			d at scheduled depth				04/05/20			Ť

		CAUS	EW	AY ECH			-	ect No. L443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations			ole ID BH01
Metho Inspectio		Plant U		Top (m) 0.00	Base 1.2		Coor	dinates	Final De	epth: 30.00 m	Start Date:	19/09/2022	Driller:	KW		heet 1	
Sonic Dri Rotary Co	illing	Fraste CRS_ Fraste CRS_	_XL Duo	1.20 15.00	15. 30.	.00		22.03 E 68.88 N	Elevatio	on: 8.84 mOD	End Date:	20/09/2022	Logger:	DC		Scale: FIN	
Depth (m)	Sample / Tests	Fie	ld Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water	Backf	äll
0.00 - 0.50	B1									MADE GROUND: Fir Sand is fine to coars				silty CLAY.			
0.50	ES1											·					0.5
1.00	ES2																1.0
1.50 1.50 - 2.45 1.50 - 1.95	ES3 B4 SPT (S)	N=27 (4,5/5,6	5,8,8)		1.00		7.34	1.50		MADE GROUND: Fi Sand is fine to coars	_				-		1.5 ** ** 2.0
2.50	ES4						6.39	2.45		Brownish grey sand is fine to coarse.	y clayey subar	gular fine to co	arse GRAVI	EL. Sand			2.5
3.00	ES5						5.84	3.00		Dense grey subangu	ular medium to	coarse GRAVEI	L.				3.0
3.00 - 3.30 3.00 - 3.45 3.30 - 4.50	B8 SPT (S) B9	N=33 (6,5/7,7	7,9,10)		1.00		5.54	3.30	X	Very stiff brown slig to coarse. Gravel is			y CLAY. Sar	nd is fine			3.5
4.50 - 5.00 4.50 - 6.00	U62 B10	Ublow=139 1	.00% Reco	very	4.50	4.00	4.34	4.50	X	Very stiff brown slig coarse. Gravel is sul				e to			4.5
6.00 6.00 - 6.50 6.00 - 6.45 6.50 - 7.50	D11 B12 SPT (S) B13	N=43 (8,9/10	,10,11,12)		4.50		2.84	6.50	× · · · · · · · · · · · · · · · · · · ·	Very stiff brown slig to coarse. Gravel is Very stiff brown slig coarse. Gravel is sub	subangular fin	e to coarse.	-				6.5
7.50 7.50 - 8.00 7.50 - 8.00	D14 B16 U63	Ublow=132 1	.00% Reco	very	7.50	4.00	0.84	8.00	X	Very stiff brown slig Gravel is subangula				oarse.			7.5
9.00	D15						-0.16	9.00		Very stiff greyish bro	own slightly sa	ındv gravelly silt	v CLAY. Sar	nd is fine			9.0
9.00 9.00 - 10.40	D20 B18								X	to coarse. Gravel is							
. , , , , , , , , , , , , , , , , , , ,		r Strikes	n : *	\ -			g Details		Remarks								
Casing D To (m) D 15.00	etails Diam (mm 177	Water From (m) 1.20		n) From	(m)	To (m) Tim	ne (hh:mm)	Inspection	n pit hand dug to 1.20	m.						
30.00	200			Core	Barr	el	Flush	Туре	Termina	tion Reason				Last Up	date	d	
							Polyme	r/Water	Terminate	ed at scheduled depth				04/05/	2023		ACE

			EO	ΤE	СН			21-1	ct No. 443E	Project Client: Client's		rray Offshor	Stage 1 Onshore Windfarm Geosolutions		estigations	w	orehole	H01
Metho Inspection		Plant U Hand T			T op (r 0.00	_	se (m) 1.20	Coord	linates	Final De	pth: 30.00 m	Start Date:	19/09/2022	Driller:	KW		heet 2 o Scale: 1:	
Sonic Dril Rotary Co	_	Fraste CRS			1.20 15.0		5.00		2.03 E 8.88 N	Elevatio	n: 8.84 mOD	End Date:	20/09/2022	Logger:	DC		FINAL	
Depth (m)	Sample / Tests	Fie	eld Reco	rds		Casi Dep (m	ng Water th Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water	Backfill	
9.00 - 9.34 10.40 - 10.50	SPT (S)	50 (7,10/50 f	or 185	mm)		9.0	00	-1.56	10.40	× × × × × × × × × × × × × × × × × × ×	Very stiff greyish bri to coarse. Gravel is	subangular to	subrounded fine	e to coarse	s.			9.5 —
10.50 10.50 - 10.70	D21 U64 B22	Ublow=150 2	20% Re	cove	ry	10	.5 6.00	-1.66	10.40		Very stiff brown slig coarse. Gravel is sul Very stiff greyish bru low cobble content. subrounded fine to	bangular to sub own slightly sa . Sand is fine to	orounded fine to ndy slightly grav	o coarse. velly silty C	LAY with	,		10.5 — — — — — — — — — — — — — — — — — — —
12.00 12.00 12.00 - 13.30 12.00 - 12.24	D23 D26 B24 SPT (C)	50 (12,13/50	for 95	mm)		12	.0	-3.16	12.00		Very stiff brown slig Sand is fine to coars coarse. Cobbles are	se. Gravel is sul				-		12.0 —
13.50 13.50	B25 D29 U4 B28 B27	Ublow=98 0% Recovery					-4.46 -4.66 -4.96	13.30	× × × × × × × × × × × × × × × × × × ×	Very stiff grey slight coarse. Gravel is sul Very stiff greyish bro is fine to coarse. Gravery stiff dark brow Sand is fine to coarse coarse.	bangular to sub own slightly sa avel is subangu rnish grey slight	prounded fine to ndy slightly grav llar fine to coars tly sandy slightly	o coarse. velly silty C se. y gravelly s	CLAY. Sand			13.5 — 14.0 — 14.5 — 14.0 — 14.5 —	
15.00 15.00 - 15.60 15.00 - 15.30	D30 B31 SPT(C) 5 for 150	50 (10,15/50 mm)	30			15	.0	-6.76	15.60	X X X X X X X X X X X X X X X X X X X	NO RECOVERY: Drill out.	er notes sands	and gravels. Ma	aterial likel	ly washed			15.0 — 15.0 — 15.5 — 16.0 —
16.40 - 16.50 16.50 16.50 16.50 - 18.00 16.50 - 16.58	D32 B35 SPT(C) 5	50 (25 for 0 for 75mm)	100			16	.5	-7.56	16.40		Very stiff grey slight cobble content. San subrounded fine to	nd is fine to coa						16.5 — 16.5 — - 17.0 — 17.5 —
18.00 18.00 18.00 - 19.50	D33 B37		TCR S	SCR F	-	18 FI										-		18.0 — — — — — — — — — 18.5 —
Struck at (m) Ca		Time (min)	Rose t	o (m)	-	narks ection		nd dug to	1.20m.									
Casing De		Water		d m)	-	ore Ba		Flush		Tarmina	ion Reason				Last Up	ndate	d =	
						00		Polymer			d at scheduled depth	l.			04/05/			GS

			GEC	W	ECI	-			21-1	ct No. 443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations	w	orehole IC P2_BH0)1
Inspection Sonic Drill Rotary Co	n Pit ling	Plant L Hand T Fraste CRS Fraste CRS	ools _XL [0.0 1.2 15.	00 20	1.2 15. 30.	20 .00	72562	2.03 E 8.88 N	Final De		Start Date:	19/09/2022	Driller: Logger:			heet 3 of 4 Scale: 1:50 FINAL	
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Des	cription			Water	Backfill	
18.00 - 18.08	SPT(C) 5 10mm/5 75mm)	0 (25 for 50 for	100									Very stiff grey slight cobble content. Sar subrounded fine to	nd is fine to co					19.0	0 —
19.50 19.50	D36								-10.66	19.50	/ / /	NO RECOVERY: Drill out.	ler notes sand	s and gravels. M	aterial likel	y washed		19.5	5 -
20.00 20.00 - 20.55	D40 B39		70						-11.16	20.00	X	Very stiff grey slight cobble content. Sar	nd is fine to co					20.0	0 -
20.52 - 21.00	B38								-11.71	20.55	\$\frac{1}{2}\frac{1}{2	Dense greyish brow content. Gravel is s	n gravelly fine) with low o	obble		20.5	5 - -
21.00 21.00 21.00 - 22.50	D41 B43		30															21.0 21.5	-
22.00 22.50	D42									(3.35)								22.C 22.5	0
23.30 - 23.55	B44 B47 B45		30															23.6	
23.90 - 24.00 24.00 24.00 24.00 - 24.60 24.00 - 24.26			100				24.0		-15.06 -15.16	- 24.58	X	Very stiff brown slig to coarse. Gravel is Very stiff greyish br to coarse. Gravel is 24.60-24.95m: Brown gre to medium.	subangular to own slightly sa subangular to	subrounded fin andy gravelly silt subrounded fin	e to coarse cy CLAY. San e to coarse	/ d is fine		24.C 24.S	0 —
24.95 - 25.15 25.15 - 25.50			100								X	io mediam.		_				25.0	0 —
25.50 25.50 25.50 - 27.00 25.50 - 25.80	D53 B54 SPT(S) 50 for 150n	0 (10,15/50 nm)	100				25.5			(4.50)	× · · · · · · · · · · · · · · · · · · ·							25.5 26.0 26.9	
27.00 27.00 27.00 - 28.50 27.00 - 27.38	D55 B56 SPT(C) 5 for 225n	0 (9,12/50 nm)	100				27.0				X X X X X X X X X X X X X X X X X X X							27.C 27.S	0
	Water	Strikes	TCR	SCR	RQD	FI	Chic	مناام	g Details		Remarks								_
Casing De To (m) Dia	sing to (m)	Time (min) Water	Adde		n) Fr			To (e (hh:mm)		n pit hand dug to 1.20	0m.						
30.00	200					Core	Barr	el	Flush Polymer			tion Reason	1.			Last Up		d AG	S

		CAUS	E	W	A EC	Y H				ect No. 1443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations		orehole	
Metho Inspectior Sonic Dril Rotary Co	n Pit Iing	Plant U Hand T Fraste CRS Fraste CRS	Tools XL I	Duo	0. 1.	.00 .20 5.00	1. 15	20 .00 .00	7256	22.03 E 68.88 N	Final De			19/09/2022 20/09/2022	Driller:			Scale: 1:	50
Depth	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level	Depth	Legend	1	Des	cription	ļ		Water	Backfill	
(m) 28.50 28.50 28.50 - 28.88 28.70 - 29.50 29.50 - 30.00 30.00 30.00	D57 SPT(C) 5 for 225r B58 D60	50 (9,10/50	80				28.5		-19.66	(1.50)	X	Very stiff greyish br to coarse. Gravel is Very stiff greyish br is fine to coarse. Gr	own slightly sa subangular to own slightly sa avel is subang	andy gravelly silt subrounded fine andy slightly grav	to coarse	LAY. Sand	M .		28.0 - 28.5 29.0 - 29.5 30.0 - 30.5 31.0 - 32.5 33.0 - 34.5 35.0 - 36.5 37.0 -
			TCR	SCR	RQD	FI				<u> </u>									
Casing De To (m) Di	etails		Add	ed	n) F	From (To (g Detail (m) Tir	s me (hh:mm)	Remarks Inspection	n pit hand dug to 1.20	 Om.						
15.00 30.00	177 200	1.20	3	0.00	-	Core	Barı	rel		Type er/Water		tion Reason	1.			Last Up			G(

		CAUSEW	AY ECH				ct No. 443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations		ehole ID 2_BH0
Metho		Plant Used	Top (m)	_		Coord	linates	Final De	epth: 30.00 m	Start Date:	13/09/2022	Driller:	ĸw		et 1 of 4
Inspectior Sconic Dri		Hand Tools Fraste CRS_XL Duo	0.00 1.20	30.			21.13 E 19.98 N	Elevatio	•		16/09/2022				ale: 1:50
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water	Backfill
0.00	B2	13-09-2022		13.0		7.46	0.35		MADE GROUND: Da		silty subangula	r fine to me	edium	.00 .00 .00	
0.25 - 1.25 0.50 - 1.25	ES1					7.46	0.25		MADE GROUND: So	ft brown sligh			LAY. Sand		0.5
0.30 - 1.23	E31						Ē		is fine to coarse. Gr	avel is subangi	lar fine to coar	se.			0.3
0.90 - 2.10	ES2														1.0
1.20 - 1.65 1.25 - 1.50	SPT (S) B3	N=41 (6,6/7,11,11,12)		1.50		6.46	1.25		MADE GROUND: De			ounded fine	e to		
1.50 - 1.70	ES3					6.21	1.50		coarse GRAVEL. San MADE GROUND: De			arse SAND.	Gravel is	• •	
2.00	ES4								subrounded fine to	medium.				•	
2.10 - 3.00	В9					5.61	2.10	********	Dense light grey sar						
2.50	ES5							0 0	cobble content. Sar	ıα ıs πne to co	arse. Cobbles ar	e subround	iea.		2.5
3.00	D24					4.71	3.00	a . o a . 0	Very stiff brown slig	de altro de la decenita	hali	AV C1:1	G +-		3.0
3.00 3.00 - 4.50	ES6 B10								coarse. Gravel is sul				ille to		
3.00 - 3.45		N=38 (3,4/7,9,10,12)		3.00			-								3.5
							F								4.0
							E								
4.50 - 5.00	U44	Ublow=129 100% Reco	very	4.50	3.00	3.21	4.50		Very stiff brown slig	thtly gravelly s	andy CLAV Sand	l is fine to c	narse		4.5
4.50 - 5.30	B11								Gravel is subangula				Jourse.		
							E								5.0
5.30 - 5.90	B12					2.41	5.30		Danas kassas aliakt	h	£+	CAND C	-1:-		
								× × ×	Dense brown slight subangular fine.	iy graveliy siity	nne to coarse s	SAND. Grav	eris		5.5
								×.×.×							
5.90 - 6.00 6.00	B13 D25					1.81 1.71	5.90 6.00	×	Very stiff brown sar Dense brown grave				nal shall		6.0
6.00 - 6.50 6.00 - 6.45	B14 SPT (S)	N=34 (3,7/8,10,7,9)		6.00				× × ×	fragments. Gravel is	, ,		itii occasioi	ilai sileli		
6.50 - 6.70	B15					1.21	6.50		Very stiff greyish br	own slightly sa	ndy slightly gra	velly CLAY.	Sand is		6.5
6.70 - 7.00	B16					1.01	6.70		fine to coarse. Grav Dense light grey sar			GRAVFI Sa	and is fine		
7.00 - 7.50	B17					0.71	7.00	\$ * * * * * * * * * * * * * * * * * * *	to coarse.				/		7.0
7.20 - 7.85	U45	Ublow=250 100% Reco	very	7.50	4.00				Very stiff greyish bri fine to coarse. Grav						
7.50 - 8.50	B18					0.21	7.50		Very stiff brown slig						7.5
							E		fragments. Sand is f	fine to coarse.	Gravel is subrou	unded fine	to coarse.		
															8.0
8.50 - 9.00	B19					-0.79	8.50		Very stiff brown slig Gravel is angular fin		velly CLAY. Sand	l is fine to c	coarse.		8.5
9.00	D26					-1.29	9.00		Very stiff brown slig	thtly sandy slig	htly gravelly CL	AY. Sand is f	fine to		9.0
9.00 - 10.30 9.00 - 9.45	B20 SPT ()	N=50 (3,6/10,13,17,10))	9.00					coarse. Gravel is sul						
	Water	Strikes		Chis	elling	Details	<u> </u>	Remarks	<u> </u>						
Struck at (m) Cas) Time (min) Rose to (n	n) From		To (m		e (hh:mm)	Inspection	n pit hand dug to 1.20 able groundwater stri		ed - water adde	ed during dr	illing.		
Casing De		Water Added													
To (m) Di	iam (mm) 177	1.20 To (m) 1.20 30.00													
			Core	Barr	el	Flush	Туре	Terminat	tion Reason				Last Upo	lated	
						Wa	ter	Terminate	d at scheduled depth	ı.			04/05/2	2023	AC

		C	AUS	EOTE	CH			•	ct No. 443E	Client:		rray Offsho	re Windfarm Geosolutions				P2_I		
Meth Inspecti	ion Pi		Plant U Hand To	ools	0.0		.20		inates	Final De	pth: 30.00 m	Start Date:	13/09/2022	Driller: K	(W		neet 2 cale:		
Sconic D	Orillin	g	Fraste CRS_	_XL Duo	1.20	0 30	0.00	72572 72311	1.13 E 9.98 N	Elevatio	n: 7.71 mOD	End Date:	16/09/2022	Logger: [ЭС		FIN	AL	
Depth (m)		mple / Tests	Fie	ld Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Desc	ription	·		Water	Backf	ill	
0.30 - 10.5 0.50	50 B2							-2.59 -2.79	10.30		Very stiff brown slig coarse. Gravel is sul Very stiff brown slig coarse. Gravel is an	chtly sandy slig	orounded fine to	o coarse.					9.5 10.0 ·
0.50 - 11.1 0.50 - 10.8 1.10 - 12.0	38 SP	T ()	50 (4,8/50 fo	r 225mm)		10.	5	-3.39	11.10		Very stiff brown slig Gravel is subangula Very stiff brown slig	htly sandy gra r fine to coarse	velly CLAY. Sand					1	11.0
2.00 - 13.5								-4.29	12.00		Gravel is subangula Very stiff brown slig	r fine to mediu	m.					1	11.5 12.0 ·
2.00 - 12.4 3.50 - 15.0			N=50 (9,12/1	6,16,12,6)				-5.79	13.50		Gravel is subangula	r to subrounde	d fine to mediur	m.				***************************************	12.5 13.0
5.00 - 15.6	50 P3	0									Gravel is subangula							-:	14.0
	15 SP	T (S)	N=50 (4,8/9,1	12,12,17)				-7.89	15.60		Very stiff brownish coarse. Gravel is sul				e to				15.5 16.0
6.50 - 18.0 6.50 - 16.9			50 (5,8/50 fo	r 275mm)														1	16.5 17.0
8.00 - 19.5 8.00 - 18.2			50 (10,15/50	for 125mr	n)			-10.29	18.00		Very stiff dark grey coarse. Gravel is sul				fine to				18.0 18.5
	v	Vater	Strikes		Re	marks													_
Casing I	Casing Detai	to (m)	Time (min)	Added	n) Ins	pection		nd dug to : oundwater		ncountered	l - water added durin	g drilling.							
To (m) 30.00	Diam 17	(mm) 77	From (m) 1.20	To (m) 30.00															_
					C	ore Ba	rrel	Flush	Туре	Terminat	ion Reason				Last Upd	ated	1	L	I

			EOTE	СН			21-1	ct No. 443E	Project Client: Client's		rray Offsho	- Stage 1 Onsho re Windfarm Geosolutions		estigations	w	orehole P2_BH	102
Metho Inspection Sconic Dri	n Pit	Plant U Hand To Fraste CRS_	ools	Top (m 0.00 1.20	1	e (m) .20).00		linates 21.13 E	Final De	epth: 30.00 m	Start Date:	13/09/2022	Driller:	KW		heet 3 of Scale: 1:5	
	8	_						19.98 N	Elevatio	n: 7.71 mOD	End Date:	16/09/2022	Logger:	DC		FINAL	
Depth (m)	Sample / Tests	Fiel	ld Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfill	<u>_</u>
		50 (9,10/50 fc	or 225mm)						Very stiff dark grey coarse. Gravel is sul	slightly sandy bangular to su	slightly gravelly (o medium.	is fine to			19.0 19.5 20.0
1.00 1.00 - 22.50 1.00 - 21.15		50 (10,15/50	for 0mm)														20.5 21.0 21.5
2.50 2.50 - 24.00 2.50 - 22.88	D38 B40 SPT (S)	50 (8,9/50 for	⁻ 225mm)														22.5 23.0
4.00 - 25.50 4.00 - 24.16		50 (10,15/50	for 10mm)													24.0 24.5
5.50 - 27.00 5.50 - 25.80		50 (10,12/50	for 150mr	m)													25.5 25.5 26.0
7.00 - 28.50	B42														-		27.0
		r Strikes			narks												
Casing De		Water A					nd dug to nundwate		ncountered	d - water added durin	g drilling.						
30.00	177	1.20	30.00	Co	re Bar	rel	Flush	Туре	Terminat	tion Reason				Last Up	date	ed 🔳	-
							Wa			d at scheduled depth	ı.			04/05/			בָּ

	C	CAUSEV	VAY FECH			Project 21 -14		Client:		rray Offsho	re Windfarm		stigations		orehole ID P2_BH02
Metho	d d	Plant Used	Top (m)	Base	m)	Coordi	inates	Client's		u Donerty (Geosolutions	(GDG)		,	heet 4 of 4
Inspection	n Pit	Hand Tools	0.00	1.20)			Final Dep	10.00 m	Start Date:	13/09/2022	Driller:	KW	1	Scale: 1:50
Sconic Dri	illing	Fraste CRS_XL Duo	0 1.20	30.0		725721 723119		Elevation	: 7.71 mOD	End Date:	16/09/2022	Logger:	DC		FINAL
Depth (m)	Sample / Tests	Field Record	ds	Casing 1 Depth I (m)	Vater Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfill
28.50 - 30.00		Strikes	Rema	ırks		-22.29	30.00		Very stiff dark grey scoarse. Gravel is sub	oangular to su	hole at 30.00m	CLAY. Sand i	is fine to		28.0 28.5 29.0 29.5 30.0 31.5 32.0 32.5 33.0 34.5 35.0 35.5 36.0 36.5 37.0
uck at (m) Ca) Time (min) Rose to	(m) Inspec	tion pit		id dug to 1		ncountar	water added down	a drillina					
				uceable	e gro	unuwater	SUIKES E	ncountered -	· water added during	g ariiiINg.					
Casing De		Water Added From (m) To (m													
30.00	177	1.20 30.00	0												
			Core	Barre	۱ T	Flush T	уре	Termination	on Reason				Last Up		
						Wate	er	Terminated	at scheduled depth				04/05,	/2023	AC

		CAUSEW	AY ECH			roject No. 1-1443E	Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Client: Dublin Array Offshore Windfarm Client's Rep: Gavin and Doherty Geosolutions (GDG)	Borehole ID WP2_BH03
Metho		Plant Used	Top (m)			oordinates	Final Depth: 30.00 m Start Date: 08/09/2022 Driller: KW	Sheet 1 of 4
Inspectior Sonic Dril		Hand Tools Fraste CRS-XL Duo	0.00 1.20	30.0	72	25882.85 E 23092.03 N	Elevation: 10.54 mOD End Date: 12/09/2022 Logger: DC	Scale: 1:50 FINAL
Depth (m)	Sample / Tests	Field Records		Casing W Depth De (m) (pth n) MC		Legend Description	Backfill
0.00 - 0.50 0.10 - 9.00 0.50 0.50 - 1.00	B1 B29 ES1 B2					1.20	MADE GROUND: Firm brown slightly sandy slightly gravelly CLAY with low boulder content, occasional rootlets, and fragments of concrete red brick and plastic. Sand is fine to coarse. Gravel is subrounded to subangular.	0.5
1.20 - 1.50 1.40 - 1.60 1.50 1.50 - 1.58	B6 ES3 D5 SPT (S)	Hammer SN = 1398		1.50 1.	9.0 9.0	34	MADE GROUND: Stiff brown slightly sandy gravelly silty CLAY. Sand is fine to medium. Gravel is subangular fine to medium. NO RECOVERY - Driller notes a void/possible drain at 1.70m.	1.5
2.45 - 2.55 2.45 - 2.60 2.60 - 3.00 3.00 - 3.45	ES4 B8 B12 D10				7.9 7.9	94 2.60	Very stiff greyish brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular fine to medium. Light grey mottled granite BOULDER with a little sand and gravel. Stiff brown slightly sandy gravelly silty CLAY. Sand is fine. Gravel is	2.5 —
3.00 - 4.50 3.00 - 3.45	B11 SPT (S)	N=29 (1,3/5,6,8,10) Ha = 1398	mmer SN	3.00 1.	60		subangular fine to medium.	3.5 —
4.50 4.50 - 5.00 4.50 - 6.00 5.00 5.00 - 5.50	D54 U23 B12 D55 B25	Ublow=68 100% Recov	ery	4.50 3.	6.0	04 4.50	Stiff dark brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium.	4.5 — - - 5.0 — - - - 5.5 —
6.00 - 7.50 6.00 - 6.45 6.50 6.50 - 7.00		N=31 (2,3/5,7,9,10) Ha = 1398	mmer SN	6.00 3.	50			6.0 —
7.50 7.50 - 7.75 7.50 - 7.80 7.50 - 9.00 7.80 7.80 - 8.10 8.10	D57 U24 B27 B14 D58 B28 D59	Ublow=150 0% Recove	ry	7.50 3.	3.0 50 2.4	74 7.80	Dense brown slightly clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse. Dense brown slightly clayey sandy subangular to subrounded fine to coarse GRAVEL. Sand is fine to coarse. Very stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	7.5
9.00 - 10.50 9.00 - 9.43		50 (7,10/50 for 275mm Hammer SN = 1398	n)	9.00 4.	00			9.0
Struck at (m) C-		r Strikes) Time (min) Rose to (r	n) From		ling De	tails	Remarks	
Casing De		Water Added					Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling.	
			Core	Barrel	FI	ush Type Water	Termination Reason Last Up Terminated at scheduled depth. 04/05	

	9/ -	1	EOTI	ECH			21-1	ct No. 443E	Client's		rray Offsho	re Windfarm Geosolutions			w	P2_BH	103
Inspection	on Pit	Plant U	ools	Top (m)	1.2	20		inates	Final De	pth: 30.00 m	Start Date:	08/09/2022	Driller:	KW		heet 2 of Scale: 1:5	
Sonic Dr	rilling	Fraste CRS	-XL Duo	1.20	30.	00		2.85 E 2.03 N	Elevatio	n: 10.54 mOD	End Date:	12/09/2022	Logger:	DC		FINAL	
Depth (m)	Sample / Tests	Fie	eld Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Water	Backfill	
.50 .50 - 10.00	D60 B30									Very stiff brown slig coarse. Gravel is sub				fine to			9.5 10.0 -
0.50 - 10.80 0.50 - 12.00		Ublow=100 0)% Recove	ry													10.5
1.00 1.00 - 11.50	D61 B31																11.0 - 11.5
2.00 - 13.50 2.00 - 12.38		50 (11,14/50 Hammer SN :		m)	12.0	4.00	-1.46	12.00		Very dense brown g					-		12.0
2.50 2.50 - 13.00	D62 B32																12.5 13.0
3.50 - 15.00 3.50 - 13.95		N=49 (6,9/10 SN = 1398),12,12,15)) Hammer	13.5	4.00											13.5
4.00 4.00 - 14.50	D63 B33																14.0 14.5
5.00 - 16.50 5.00 - 15.30		40 (6,10/40 f Hammer SN :		n)	15.0	8.00			* * * * * * * * * * * * * * * * * * *								15.0
5.50 5.50 - 16.00	D64 B34																15.5 16.0
6.50 - 17.00 6.50 - 16.88		50 (15,10/50 Hammer SN :		m)	16.5	8.00	-5.96	16.50	×,-×,.x,	Very dense dark bro					_		16.5
7.00 7.00 - 17.50	D65 D B35									content.							17.0 ·
8.00 - 19.50 8.00 - 18.38		50 (14,11/50 Hammer SN :		m)	18.0	8.00	-7.46	18.00	9 X 0	Very dense brown s to coarse GRAVEL w					-		18.0
8.50 8.50 - 19.00	D66 D B36		-						a × , a× 8								18.5
	Wate	r Strikes		Rem	arks			<u>I</u>									
uck at (m) C	Casing to (n	n) Time (min)	Rose to (r				d dug to i undwater		ncountered	l - water added during	g drilling.						
Casing D			Added														
To (m) [Diam (mm 177	1.20	To (m) 30.00			. ,											_
				Core	e Barr	el	Flush Wat			ion Reason d at scheduled depth				Last Up 04/05/		d	ļ

Metho	_	GEOTE Plant Used	Top (m)	Base	(m)		443E	Client: Client's R	Rep: Gavin an	d Doherty	re Windfarm Geosolutions	(GDG)			heet 3 of	
Inspection Sonic Dril	n Pit	Hand Tools Fraste CRS-XL Duo	0.00 1.20	1.2 30.0	0	72588		Final Dept	th: 30.00 m	Start Date:	08/09/2022	Driller:	KW		Scale: 1:5	
	ı						2.03 N	Elevation:	: 10.54 mOD	End Date:	12/09/2022	Logger:	DC		FINAL	
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			ription		1.16	Water	Backfill	<u> </u>
0.00 0.00 - 21.00 0.00 - 21.00 1.00 - 22.50	B22 SPT (S) D68 B39 B46 B40 SPT (S)	50 (25 for 75mm/50 for Hammer SN = 1398 50 (8,12/50 for 150mm		19.5 8		-10.46	21.00	* * * * * * * * * * * * * * * * * * *	Very dense brown so coarse GRAVEL w	sh brown sligh	e content. Sand i	y gravelly C	oarse.			19.0 19.5 20.0 20.5 21.0 21.5
3.00	SPT (S)	50 (10,1/50 for 225mm	n)	22.5 4	1.00											22.5 23.0
4.00 - 25.50 4.00 - 24.30 4.50 4.50 - 25.00	SPT (S) D71	50 (9,16/50 for 150mm	n)	24.0 4	1.00											24.0 24.5 25.0
5.50 - 27.00 5.50 - 25.72 6.00 6.00 - 26.50	SPT (S) D72	50 (20,5/50 for 75mm)		25.5 4	1.00	-14.96	25.50		Very stiff dark greyis ow cobble and bou subrounded fine to subrounded.	lder content.	Sand is fine to co	arse. Grav	el is			25.5 26.0 26.5
7.00 - 28.50 7.50 7.50 - 28.00	B44 D73 B51															27.0 27.5
	Water	r Strikes	Rema	rks												_
Casing De	sing to (m	N) Time (min) Rose to (n	n) Inspec	tion pi		d dug to i		ncountered -	water added durinį	g drilling.						
30.00	1//	30.00	Core	Barre	el	Flush	Туре	Terminatio	on Reason				Last Up	date	d	Ī
						Wat	er	Terminated a	at scheduled depth	ı.			04/05/	2023	A	H

8		ALICENA	/A¥			ct No.		Name: Dublin Arr			re Site Inves	stigations		orehole II
		AUSEW	FCH		21-1	443E	Client:		rray Offshore W				W	P2_BH0
							Client's	Rep: Gavin an	d Doherty Geos	olutions	(GDG)			
Metho Inspection	n Pit	Plant Used Hand Tools	0.00	1.20		linates	Final De	pth: 30.00 m	Start Date: 08/0	09/2022	Driller:	KW		heet 4 of 4 Scale: 1:50
Sonic Dril	ling	Fraste CRS-XL Duo	1.20	30.00		2.85 E 2.03 N	Elevatio	n: 10.54 mOD	End Date: 12/0	09/2022	Logger:	DC		FINAL
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Descriptio				Water	Backfill
	SPT (S)	50 (21,4/50 for 75mm		28.5 4.00	-19.46	30.00		Very stiff dark greyilow cobble and bou subrounded fine to subrounded.	lder content. Sand i	is fine to co	arse. Grave	l is		28. 29. 29. 30. 31. 31.
														32. 33. 34. 35.
cruck at (m) Ca	sing to (m	r Strikes) Time (min) Rose to (Water Added		tion pit ha	and dug to oundwate		ncountered	l - water added durin;	g drilling.					37.
To (m) Di	am (mm	From (m) To (m)												
30.00	177	1.20 30.00												
			Core	Barrel	Flush	Туре	Terminat	ion Reason				Last Up	date	d
					Wa	ter	Terminate	d at scheduled depth				04/05/	2023	AC

CAUSEWAY ——GEOTECH Method Plant Used Ton (m) Base (m)							ct No. 443E	Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Client: Dublin Array Offshore Windfarm Client's Rep: Gavin and Doherty Geosolutions (GDG) Borehole ID WP2_BH04
Method Plant Used Top (m) Base (m)				(m)	Coord	inates	Sheet 1 of 4	
Inspecti Sonic D		Hand Tools Fraste CRS-XL Duo	0.00	30.0	00	725932.62 E 723154.07 N		Final Depth: 30.00 m Start Date: 05/09/2022 Driller: KW+KW Scale: 1:50 Elevation: 10.83 mOD End Date: 08/09/2022 Logger: DC FINAL
Depth (m)	Sample / Tests	Field Records	ı	Casing Depth (m)		Level mOD	Depth (m)	Legend Description Backfill
0.50	ES1					10.63 10.43 10.15	0.20 0.40 0.68	TOPSOIL: Firm brown slightly sandy slightly gravelly silty CLAY with occasional rootlets. Sand is fine to coarse. Gravel is subrounded fine to medium. MADE GROUND: Firm dark brown slightly sandy slightly gravelly CLAY Sand is fine to coarse. Gravel is subrounded fine to medium. MADE GROUND: Soft light brown slightly sandy slightly gravelly silty
1.00 1.00 - 1.45 1.10 - 1.20 1.20 - 1.60 1.20 - 1.60 1.50	ES2 SPT (S) B6 D1 D56 ES3	N=50 (1,2/6,6,4,34)		0.00		9.63 9.38 9.13	1.20 1.45	CLAY. Sand is fine to coarse. Gravel is subangular fine to medium. MADE GROUND: Stiff light greyish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium. MADE GROUND: Very stiff brown slightly sandy slightly gravelly silty CLAY Sand is fine to coarse. Gravel is subangular fine to medium.
2.00 - 2.30 2.00 - 2.30	B7 ES4					8.28	2.55	WADE GROUND: Light grey possible CONCRETE. Very stiff greyish brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular fine to medium. NO RECOVERY
3.00 - 3.15 3.00 - 3.45 3.00 - 3.45 3.00 - 3.45 3.20 - 3.50 3.20 - 3.50	ES5 D2 D57 SPT (S) B8 ES6	N=5 (1,2/1,1,2,1)		3.00 0		7.83	3.00	Firm locally soft brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium.
4.00 - 4.25	B9					6.83	4.00	Very stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium.
4.50 4.50 - 4.95 4.50 - 4.95 5.30 - 5.70	B10 D3 SPT (S)	N=32 (3,5/5,7,9,11)		4.50		6.33	4.50	Very stiff light brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium.
6.00 - 6.40 6.00 - 6.45 6.00 - 6.45 6.50 - 6.80	B12 D4 SPT (S) B13	N=48 (6,7/10,10,14,14)	ı	6.00 0		4.33	6.50	5.5
7.00 - 7.50	B14					4.03	6.80	Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subrounded fine to medium. Very stiff light brown slightly sandy slightly gravelly clayey SILT. Sand is fine. Gravel is subrounded fine to medium.
7.50 - 7.80 7.50 - 7.85 7.50 - 7.82		50 (7,12/50 for 170mm	n)	7.50		3.33 3.03	7.50	Very dense light grey silty sandy subangular fine to medium GRAVEL with frequent shell fragments. Sand is fine to coarse. Very dense greyish brown sandy silty clayey subrounded fine to coarse GRAVEL with frequent shell fragments . Sand is fine to coarse. Very stiff brown slightly sandy slightly gravelly silty CLAY with occasional shell fragments. Sand is fine to coarse. Gravel is
8.20 - 8.50 8.50 - 8.65 8.65 - 9.00	B16 B17 B18					2.33 2.18	8.50 8.65	subangular fine to medium. Very dense brownish grey sandy clayey subangular medium to coarse GRAVEL with occasional shell fragments. Sand is fine to coarse. Very stiff brown silty CLAY.
9.00 - 9.18 9.00 - 9.15 9.18 - 9.25	B19 SPT (S) B20	50 (25 for 75mm/50 for	r 75mm)	9.00 4	.50	1.83 1.65 1.58	9.00 9:18 9:28	Very stiff brown sandy silty CLAY. Sand is fine to medium. Very dense brown fine to coarse SAND with occasional shell fragments.
+rugl: -+ / ·l		r Strikes	n) [Details		Remarks
Casing I	Details Diam (mm		iij From	(111)	To (m)	, Time	e (hh:mm)	Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling.
30.00	177	1.20 30.00	Core	e Barre	el	Flush Wat		Termination Reason Last Updated O4/05/2023 AGS

CAUSEWAY ——GEOTECH								ect No. 1443E	Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Client: Dublin Array Offshore Windfarm Client's Rep: Gavin and Doherty Geosolutions (GDG) Borehole ID WP2_BH04
Method Plant Us Inspection Pit Hand To			1	Г ор (m) 0.00	Base (m) 1.20		Coordinates		Final Depth: 30.00 m Start Date: 05/09/2022 Driller: KW+KW Sheet 2 of 4
Sonic Drilling		Hand Tools Fraste CRS-XL D	uo	0.00	30.	-		32.62 E 54.07 N	Scale: 1:50 Elevation: 10.83 mOD End Date: 08/09/2022 Logger: DC FINAL
Depth (m) 9.25 - 9.74	Sample / Tests	Field Rec	ords		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend Description Backfill
.74 - 10.70	B21 B22						1.09	9.74	Very stiff dark greyish brown slightly sandy slightly gravelly silty CLAY with occasional shell fragments. Sand is fine to coarse. Gravel is subangular fine.
0.50 - 10.95 0.70 - 11.50		N=50 (8,10/12,12,:	14,12)		10.5	4.50	0.13	10.70	Very stiff light greyish brown sandy gravelly SILT with occasional shell fragments Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse.
1.50 - 11.95	B24						-0.67	11.50	shell fragments. Sand is fine to coarse. Gravel is subangular fine to
1.95 - 12.25 2.00 - 12.40 2.25 - 12.38 2.38 - 12.70	SPT (C) B26	50 (7,11/50 for 25!	5mm)		12.0 5	5.00	-1.12 -1.42 -1.55	11.95 12.25 12.38	Very dense light greyish brown silty gravelly fine to coarse SAND with occasional shell fragments. Gravel is subangular fine to medium.
2.70 - 13.00							-1.87	12.70	Uight grey BOULDERS. Very dense dark grey sandy subangular fine to medium GRAVEL. Sand is fine to coarse
3.00 - 13.15 3.15 - 13.50							-2.17 -2.32	13.00	Very stiff grevish brown slightly sandy slightly gravelly silty CLAY Sand
3.50 - 13.80 3.50 - 13.65 3.80 - 14.20	SPT (C)	50 (25 for 75mm/50 for 75mm)			13.5	5.5 5.00	-2.67 -2.97	13.50	GRAVEL. Sand is fine to coarse. Very dense dark brownish grey sandy silty subangular fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are
4.20 - 14.40 4.40 - 14.60 4.60 - 15.00	B34						-3.37 -3.57 -3.77	14.20 14.40 14.60	Very dense light greyish brown sandy silty subangular fine to coarse GRAVEL with low boulder content. Sand is fine to coarse. Very dense dark grey sandy silty subangular to subrounded fine to
5.00 - 16.50 5.00 - 15.42		50 (7,10/50 for 270	0mm)		15.0	9.00	-4.17	15.00	Very dense light greyish brown sandy subrounded to subangular fine
.6.50 - 16.92 .7.00 - 17.70		50 (8,10/50 for 27	5mm)		16.5	10.0			16.5
.7.70 - 18.00 .8.00 - 19.50	B39						-6.87 -7.17	17.70	Very dense greyish brown sandy clayey subrounded to subangular fine to coarse GRAVEL Sand is fine to coarse
8.00 - 18.38	SPT (C)	50 (8,9/50 for 225	mm)		18.0	10.0			coarse GRAVEL. Sand is fine to coarse.
	Water	Strikes			Chise	elling	Detail	S	Remarks
Casing De		Water Adde		From (<u>m)</u>	To (ı	m) Tin	ne (hh:mm)	Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling.
30.00	177		0.00	Core	Barre	el	Flush	Туре	Termination Reason Last Updated
							Wa	ater	Terminated at scheduled depth. 04/05/2023

CAUSEWAY GEOTECH Method Plant Used Top (m) Base (m)								ect No. L443E	Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations Client: Dublin Array Offshore Windfarm WP2_BH04 Client's Rep: Gavin and Doherty Geosolutions (GDG)
Method Inspection Pit		Plant Used Hand Tools		Top (m) 0.00	Base (m) 1.20		Coordinates		Final Depth: 30.00 m Start Date: 05/09/2022 Driller: KW+KW Sheet 3 of 4
Sonic Dril		Fraste CRS-XI		0.00	30.		725932.62 E 723154.07 N		Elevation: 10.83 mOD End Date: 08/09/2022 Logger: DC FINAL
Depth (m)	Sample / Tests	Field	Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend Description backfill Backfill
19.50 - 21.00 19.50 - 19.88		50 (9,10/50 for	225mm)		19.5	10.0	-8.67	19.50	Very dense greyish brown silty sandy subrounded to subangular fine to coarse GRAVEL. Sand is fine to coarse.
21.00 - 22.70 21.00 - 21.30		50 (7,10/50 for	155mm)		21.0	10.0	-10.17	- 21.00	Very dense greyish brown sandy subrounded to subangular fine to coarse GRAVEL. Sand is fine to coarse.
22.50 - 22.85 22.70 - 23.00		50 (7,11/50 for	200mm)		22.5	10.0	-11.87	22.70	Very dense grey slightly sandy subrounded to subangular fine to medium GRAVEL. Sand is fine to coarse.
23.00 - 23.15 23.15 - 23.25 23.25 - 24.00	B50						-12.17 -12.32 -12.42	23.00 23.15 23.25	COBBLES Very dense greyish brown sandy subrounded to subangular medium to coarse GRAVEL. Sand is fine to coarse.
24.00 - 24.22	SPT (C)	50 (10,15/50 fo	or 75mm)		24.0	10.0	-13.17	24.00	NO RECOVERY
24.50 - 25.50							-13.67	24.50	Very dense subrounded to subangular fine to coarse GRAVEL,
				75mm)	25.5 7.00		-14.67 -14.87 -15.27	25.70	Very dense brown sandy subrounded to subangular medium to coarse GRAVEL. Sand is fine to coarse. Very stiff brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular fine to medium. Very stiff dark grey slightly sandy slightly gravelly silty CLAY . Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse.
								E	
		Strikes					Details		Remarks
Casing De	etails am (mm		dded To (m)) From ((m)	To (ı	m) Tim	ne (hh:mm)	Inspection pit hand dug to 1.20m. No noticeable groundwater strikes encountered - water added during drilling.
30.00	177	1.20	30.00	Core	Barr	el	Flush	Туре	Termination Reason Last Updated
								iter	Terminated at scheduled depth. 04/05/2023

Method	_	GEOTI	Top (m)	Base	e (m)		443E	Client: Dublin Array Offshore Windfarm Client's Rep: Gavin and Doherty Geosolutions (GDG) Final Depth: 30.00 m Start Date: 05/09/2022 Driller: KW+KW							WP2_BH04 Sheet 4 of 4			
Inspection Pit Sonic Drilling		Hand Tools Fraste CRS-XL Duo	0.00	_	20	72593	2.62 E 4.07 N	Final Depth Elevation:			05/09/2022	Driller: Logger:	KW+KW DC	Scale: 1:50		50		
Depth	Sample /	Field Records		Casing Depth (m)	Water Depth (m)	Level	Depth	Legend		Des	cription		_	Water	Backfill			
(m) 8.50 - 30.00 8.50 - 28.72	SPT (C)	50 (9,16/50 for 75mm)		28.5	4.50	-19.17	30.00				hole at 30.00m			m e e e e e e e e e e e e e e e e e e e		28.5 29.0 - 29.5 30.0 - 30.5 31.0 - 31.5 32.0 - 33.5 34.0 - 35.5 36.0 - 36.5 37.0 -		
Casing De	sing to (m	Nater Added From (m) To (m) 1.20 30.00	m) From		To (i	g Details	e (hh:mm)		hand dug to 1.20 groundwater stri		red - water added	d during dr	illing.					
			Core	Barr	rel	Flush	Type	Termination	Reason				Last Up	date	d	╗		

APPENDIX C CORE PHOTOGRAPHS

WP1_BH01: Box 1 (0.00-1.50m)

WP1_BH01: Box 2 (1.50-3.00m)

WP1_BH01: Box 3 (3.00-4.50m)

WP1_BH01: Box 4 (4.50-6.00m)

WP1_BH01: Box 5 (6.00-7.50m)

WP1_BH01: Box 6 (7.50-9.00m)

WP1_BH01: Box 7 (9.00-10.50m)

WP1_BH01: Box 8 (10.50-11.00m)

WP1_BH01: Box 9 (11.00-12.50m)

WP1_BH01: Box 10 (12.50-14.00m)

Dubin Array Onshore Site Investigations

WP1_BH01: Box 11 (14.00-15.50m)

Report No.: 21-1443E

WP1_BH02: Box 1 (1.50-3.00m)

WP1_BH02: Box 2 (3.00-4.50m)

WP1_BH02: Box 3 (4.50-6.00m)

WP1_BH02: Box 4 (6.00-7.50m)

WP1_BH02: Box 5 (7.50-9.00m)

WP1_BH02: Box 6 (9.00-10.50m)

WP1_BH02: Box 7 (10.50-12.00m)

WP1_BH02: Box 8 (12.00-13.50m)

WP1_BH02: Box 9 (13.50-15.00m)

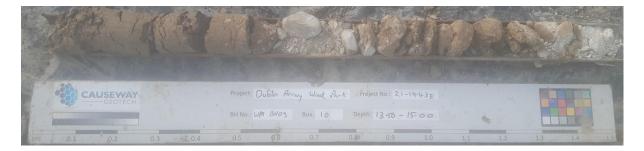
WP1_BH03: Box 1 (1.50-3.00m)

WP1_BH03: Box 2 (3.00-4.50m)

WP1_BH03: Box 3 (4.50-6.00m)

WP1_BH03: Box 4 (6.00-7.50m)

WP1_BH03: Box 5 (7.50-9.00m)


WP1_BH03: Box 6 (9.00-10.50m)

WP1_BH03: Box 8 (10.50-12.00m)

WP1_BH03: Box 9 (12.00-13.50m)

WP1_BH03: Box 10 (13.50-14.00m)

WP1_BH04: Box 1 (0.00-1.50m)

WP1_BH04: Box 2 (1.50-3.00m)

WP1_BH04: Box 3 (3.00-4.50m)

WP1_BH04: Box 4 (4.50-6.00m)

WP1_BH04: Box 5 (6.00-7.50m)

WP1_BH04: Box 6 (7.50-9.00m)

WP1_BH04: Box 7 (9.00-10.50m)

WP1_BH04: Box 8 (10.50-12.00m)

WP1_BH04: Box 9 (12.00-13.50m)

WP1_BH04: Box 10 (13.50-15.00m)

WP1_BH06: Box 1 (1.50-3.00m)

WP1_BH06: Box 2 (3.00-4.50m)

WP1_BH06: Box 3 (4.50-6.00m)

WP1_BH06: Box 4 (6.00-7.50m)

WP1_BH06: Box 5 (7.50-9.00m)

WP1_BH06: Box 6 (9.00-10.50m)

WP1_BH08: Box 1 (0.00-1.50m)

WP1_BH08: Box 2 (1.50-3.00m)

WP1_BH08: Box 3 (3.00-4.50m)

WP1_BH08: Box 4 (4.50-6.00m)

WP1_BH08: Box 5 (6.00-7.50m)

WP1_BH08: Box 6 (7.50-9.00m)

WP1_BH08: Box 7 (9.00-10.50m)

WP1_BH10: Box 1 (1.50-3.00m)

WP1_BH10: Box 2 (3.00-4.50m)

WP1_BH10: Box 3 (4.50-6.00m)

WP1_BH10: Box 4 (6.00-7.50m)

WP1_BH10: Box 5 (7.50-9.00m)

WP1_BH10: Box 6 (9.00-10.50m)

WP2_BH01: Box 2 (1.50-3.00m)

WP2_BH01: Box 3 (3.00-4.50m)

WP2_BH01: Box 4 (4.50-6.00m)

WP2_BH01: Box 5 (6.00-7.50m)

WP2_BH01: Box 6 (7.50-9.00m)

WP2_BH01: Box 7 (9.00-10.50m)

WP2_BH01: Box 8 (10.50-12.00m)

WP2_BH01: Box 9 (12.00-13.50m)

WP2_BH01: Box 10 (13.50-15.00m)

WP2_BH01: Box 11 (15.00-16.50m)

WP2_BH01: Box 12 (16.50-18.00m)

WP2_BH01: Box 13 (18.00-19.50m)

WP2_BH01: Box 14 (19.50-21.00m)

WP2_BH01: Box 14 (21.00-22.50m)

WP2_BH01: Box 14 (22.50-24.00m)

WP2_BH01: Box 14 (24.00-25.50m)

WP2_BH01: Box 14 (25.50-27.00m)

WP2_BH01: Box 19 (27.00-28.50m)

WP2_BH01: Box 20 (28.50-30.00m)

WP2_BH02: Box 1 (0.00-1.50m)

WP2_BH02: Box 2 (1.50-3.00m)

WP2_BH02: Box 3 (3.00-4.50m)

WP2_BH02: Box 4 (4.50-6.00m)

WP2_BH02: Box 5 (6.00-7.50m)

WP2_BH02: Box 6 (7.50-9.00m)

WP2_BH02: Box 7 (9.00-11.50m)

WP2_BH02: Box 8 (11.50-12.00m)

WP2_BH02: Box 9 (12.00-13.50m)

WP2_BH02: Box 10 (13.50-15.00m)

WP2_BH02: Box 11 (15.00-16.50m)

WP2_BH02: Box 12 (16.50-18.00m)

WP2_BH02: Box 13 (18.00-19.50m)

WP2_BH02: Box 14 (19.50-21.00m)

WP2_BH02: Box 15 (21.00-23.50m)

WP2_BH02: Box 18 (25.50-27.00m)

WP2_BH02: Box 19 (27.00-28.50m)

WP2_BH02: Box 20 (28.50-30.00m)

WP2_BH03: Box 1 (0.00-1.50m)

WP2_BH03: Box 2 (1.50-3.00m)

WP2_BH03: Box 3 (3.00-4.50m)

WP2_BH03: Box 4 (4.50-6.00m)

WP2_BH03: Box 5 (6.00-7.50m)

WP2_BH03: Box 6 (7.50-9.00m)

WP2_BH03: Box 7 (9.00-10.50m)

WP2_BH03: Box 8 (10.50-12.00m)

WP2_BH03: Box 9 (12.00-13.50m)

WP2_BH03: Box 7 (13.50-15.00m)

WP2_BH03: Box 8 (15.00-16.50m)

WP2_BH03: Box 9 (16.50-18.00m)

WP2_BH03: Box 10 (18.00-19.50m)

WP2_BH03: Box 11 (19.50-20.00m)

WP2_BH03: Box 15 (20.00-21.00m)

WP2_BH03: Box 16 (21.00-22.50m)

WP2_BH03: Box 17 (22.50-24.00m)

WP2_BH03: Box 15 (24.00-25.50m)

WP2_BH03: Box 16 (25.50-27.00m)

Dubin Array Onshore Site Investigations

WP2_BH03: Box 20 (27.00-28.50m)

WP2_BH03: Box 21 (28.50-30.00m)

WP2_BH04: Box 1 (1.50-3.00m)

WP2_BH04: Box 2 (3.00-4.50m)

WP2_BH04: Box 3 (4.50-6.00m)

WP2_BH04: Box 4 (6.00-7.50m)

WP2_BH04: Box 5 (7.50-9.00m)

WP2_BH04: Box 6 (9.00-10.50m)

WP2_BH04: Box 7 (10.50-12.00m)

WP2_BH04: Box 8 (12.00-13.50m)

WP2_BH04: Box 9 (13.50-15.00m)

WP2_BH04: Box 10 (15.00-16.50m)

WP2_BH04: Box 11 (16.50-18.00m)

WP2_BH04: Box 12 (18.00-19.50m)

WP2_BH04: Box 13 (19.50-21.00m)

WP2_BH04: Box 14 (21.00-22.50m)

WP2_BH04: Box 15 (22.50-24.00m)

WP2_BH04: Box 16 (24.00-25.50m)

WP2_BH04: Box 17 (25.50-27.00m)

WP2_BH04: Box 18 (27.00-28.50m)

WP2_BH04: Box 19 (28.50-30.00m)

APPENDIX D
TRIAL PIT LOGS

	CAUS	EWAY EOTECH	21-	ect No. 1443E rdinates	1	: Name: Array Wind Park - Stage 1 Onshore Site Investigations		
Method: Trial Pitting	——-G	EOTECH	7206	580.93 E 039.93 N	Dublin Client's	Array Offshore Windfarm s Representative: and Doherty Geosolutions (GDG)	S	heet 1 of 1 Scale: 1:25
Plant: 13T Excavator	r			vation 1 mOD	Date: 07/10/	Logger: 2022 MMC		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
0.50 0.50	B4 ES1		89.01	0.10		TOPSOIL MADE GROUND: Stiff brown slightly sandy gravelly CLAY with pieces or plastic and brick and with medium cobble content. Sand is fine to coa Gravel is subangular to subrounded fine to coarse. Cobbles are subrounded.	of	0.5 —
1.00 1.00	B5 ES2		88.21 87.86	0.90		Light brown gravelly very clayey fine to coarse SAND. Gravel is subang to subrounded fine to coarse. Very stiff dark grey slightly gravelly sandy CLAY with low cobble conte		1.0
1.50 1.50	B6 ES3					Sand is fine to coarse. Gravel is subrounded fine to coarse. Cobbles ar subrounded.		1.5 —
			86.91	2.20		End of trial pit at 2.20m		2.5 —
								3.0
								3.5 — - -
				-				4.0
				-				4.5 — - -
Wate Struck at (m)	er Strikes Remarks	Depth: 2.20 Width: 0.70 Length: 3.00		narks: groundwat	er encou	ntered.		
		Stability: Stable		mination R			st Update 4/05/2023	

			Proje	ect No.	Project	Name:		Trial Pit ID
	CAUS	FWΔY	21-1	1443E		Array Wind Park - Stage 1 Onshore Site Investigations		
3	——G	EWAY EOTECH	Coord	dinates	Client:	A	,	WP1_TP02
1ethod:			72068	36.94 E	1	Array Offshore Windfarm Representative:		
rial Pitting			72408	32.05 N		nd Doherty Geosolutions (GDG)		Sheet 1 of 1 Scale: 1:25
lant:			Elev	ation	Date:	Logger:		
3T Excavato	r			mOD	07/10/			FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water
.50 .50	B4 ES1		88.30	0.20		TOPSOIL MADE GROUND: Firm to stiff brown dark slightly sandy gravelly (with low cobble content. Sand is fine to coarse. Gravel is subang subrounded fine to coarse. Cobbles are subrounded.		0.5 -
.00	B5 ES2							1.0 —
.50 .50	B6 ES3					below 1.50m: low boulder content, boulders are subangular and up 0.30m in size	to	1.5 -
.50	B7		86.30	2.20		Firm brown slightly gravelly sandy CLAY. Sand is fine to coarse. G subrounded fine to coarse.	ravel is	2.5 -
.50	B8		84.60	3.90		End of trial pit at 3.90m		3.5 -
						End of that pic at 0.50mi		4.0 —
\A/c+	ar Strikas		Rem	arks:				
Wat Struck at (m)	er Strikes Remarks	Depth: 3.90		i arks: roundwat	er encou	ntered.		
Jaruck at (III)	, Neillaiks	Width: 0.70						
		Length: 3.50						
		Stability:	Term	nination R	Reason		Last Upda	ated 🔳 🔳
			T	inatad	ofusal			
		Stable	Term	inated on r	etusal.		04/05/20	123 1 1

	CAUS	SEWAY GEOTECH	21-	ect No. 1443E dinates	Dublin Client:		S		rial Pit ID P1_TP03
Method: Trial Pitting Plant:		31011011	7240	28.00 E 67.87 N vation	Client'	Array Offshore Windfarm s Representative: and Doherty Geosolutions (GDG)			neet 1 of 1 cale: 1:25
13T Excavator	r			mOD	04/10/	Logger: MMC	•		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water	
0.50	ES1		88.45	0.20		TOPSOIL MADE GROUND: Very stiff brown slightly sandy gravelly CLAY wi cobble content. Sand is fine to coarse. Gravel is subrounded fine coarse. Cobbles are subangular to subrounded.			- - - 0.5 — -
1.00 1.00 - 1.00	B4 ES2		87.55	1.10		MADE GROUND: Firm to stiff brown slightly sandy gravelly CLAY cobble and boulder content, two pieces of 10mm rebar, pieces of Vucting and one 0.4m fragment of concrete. Sand is fine to Gravel is subangular to subrounded fine to coarse. Cobbles and are subrounded.	of 50mm coarse.	,	1.0
1.50 1.50 1.50 - 1.50	B5 B6 ES3	Light inflow at 2.00m		- - - - - - - - - -				▼	1.5 —
2.50	В7								2.5 —
3.40	B8		85.35 85.05	3.30		Very stiff light greyish brown slightly gravelly sandy CLAY with m cobble content. Sand is fine to coarse. Gravel is subrounded fine coarse. Cobbles are subrounded. End of trial pit at 3.60m	nedium e to		3.5 —
				-					4.0
Wate Struck at (m) 2.00	Remarks Light inflow 2.00m		Rem	narks:					
		Stability: Unstable		mination R			Last Up 04/05/		AGS

			Projec	ct No.	Project	Name:	Τ.	Trial Pit ID		
S	CALIS	SEWAY	21-14	443E		Array Wind Park - Stage 1 Onshore Site Investigations				
5		SEWAY GEOTECH	Coordi	inates	Client:	A 000 L MC 10	W	VP1_TP04		
Method:			720770	0.38 E	1	Array Offshore Windfarm	\perp			
rial Pitting			724052	2.44 N		nd Doherty Geosolutions (GDG)		Sheet 1 of 1 Scale: 1:25		
lant:			Eleva	ation	Date:	Logger:	+			
3T Excavato	r		88.53 ı		04/10/			FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water			
.50	B4		88.33	0.20		TOPSOIL MADE GROUND: Brown very sandy slightly clayey subangular to subrounded fine to coarse GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded.	2	0.5		
50	ES1							0.3		
00 00 - 1.00	B5 ES2							1.0 -		
.50 .50	B6 ES3							2.0 —		
30	В7		86.43	2.10		Light brown mottled light greyish brown very silty fine to coarse SAND. Sand is fine to coarse.		2.5		
		Light inflow at 2.70m	85.83	2.70	x	Light greyish brown very silty fine to medium SAND.		3.0 -		
30	B8		85.33	3.20		Stiff dark grey slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse Cobbles are subangular to subrounded.		3.5		
			84.83	3.70	P. & . T. 11 . 15	End of trial pit at 3.70m		4.0 -		
			-							
			-					4.5		
			-							
Wat	er Strikes	Depth: 3.70	Rema	ırks:	1			'		
Struck at (m		S NATIONAL OF								
2.70	Light inflow 2.70m	v at								
		Stability:	Torm:	ination R	Passar	1-4-1	Update	ed =		
								- Peri		
	1	Unstable	Termin	nated on r	efusal.	04/0	05/2023	3 //(H		

	CAUS	EWAY EOTECH	21-	ect No. 1443E dinates	Dublin Client:	Name: Array Wind Park - Stage 1 Onshore Site Investigation:	s	Trial Pit ID
Method: Trial Pitting			7240	97.91 E 22.98 N	Client's	Array Offshore Windfarm Representative: Ind Doherty Geosolutions (GDG)		Sheet 1 of 1 Scale: 1:25
Plant: 13T Excavato	or			vation 5 mOD	Date: 05/10/	Logger: 2022 MMC		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description TOPSOIL	Water	
0.50 0.50	B4 ES1		88.56	0.10		MADE GROUND: Firm to stiff dark grey slightly sandy slightly gra CLAY with low cobble content, strands of plastic fibres, brick fraq and pieces of electrical cable. Sand is fine to coarse. Gravel is su to subrounded fine to coarse. Cobbles are subrounded.	gments	0.5 -
1.00 1.00	B5 ES2			- - - - - - - - -		below 1.30m: becoming brownish grey		1.0
1.50 1.50	B6 ES3			-		below 1.60m: no anthropogenic material encountered		1.5 -
2.60	B7		86.16 85.86	2.50		Light brown slightly clayey fine to coarse SAND.	- Franka	2.5 -
3.00	B8			- - - - -		Very stiff brown grey slightly sandy slightly gravelly CLAY. Sand is coarse. Gravel is subangular to subrounded fine to coarse.	s nne to	3.0 —
			85.46	3.20	3	End of trial pit at 3.20m		3.5 -
				-				4.0 —
\A/~	ter Strikes		Ren	arks:				
Struck at (m		Depth: 3.20 Width: 0.70 Length: 3.00	No g	groundwat		ntered.		
		Stability: Stable		nination R			04/05/202	

	CAUS	SEWAY GEOTECH	21-	ect No. 1443E dinates	Dublin Client:			Trial Pit ID WP1_TP06	
Method: Trial Pitting		JEOTECH	7240	17.93 E 31.05 N	Client's	Array Offshore Windfarm s Representative: and Doherty Geosolutions (GDG)		Sheet 1 of 1 Scale: 1:25	
Plant: 13T Excavato	r			vation) mOD	Date: 05/10/	Date: Logger: D5/10/2022 MMC		FINAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water		
("")	iests		88.80	0.20		TOPSOIL MADE GROUND: Brown sandy very clayey subangular to subrounded fi to coarse GRAVEL with medium cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded.		-	
0.50 0.50	B4 ES1		88.30	- 0.70		Brown slightly gravelly slightly clayey fine to coarse SAND. Gravel is subangular fine to coarse.		0.5 —	
1.00 1.00	B5 ES2	Slow inflow at 1.30m		-			T	1.0 —	
1.50 1.50	B6 ES3		87.50	1.50		Firm to stiff brown slightly sandy slightly gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subangular to subrounded.		1.5 —	
2.20	В7		86.50	2.50		Very stiff dark grey slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Cobbles are subrounded.		2.5 —	
3.00	В8		85.50	3.50		End of trial pit at 3.50m		3.0	
				-				4.0	
				-				4.5 —	
				-				-	
Struck at (m) 1.30	Remarks Slow inflow 1.30m	NAC STATE OF CE	Rem	narks:					
		Stability: Stable		nination R			Updat 05/202		

			Project	t No.	Project	Name:	7	rial Pit ID
XX	CAUS	EWAY	21-14	43E		Array Wind Park - Stage 1 Onshore Site Investigations		
		EOTECH	Coordin	nates	Client:	A 000 L 100 L	W	/P1_TP07
lethod:			720902	.03 E	1	Array Offshore Windfarm		
ial Pitting			724035	.31 N		nd Doherty Geosolutions (GDG)		heet 1 of 1
lant:			Elevat	tion	Date:	Logger:	3	Scale: 1:25
3T Excavato	r		86.56 m		07/10/			FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
			86.36	0.20		TOPSOIL MADE GROUND: Firm brown slightly gravelly sandy CLAY with low cobcontent. Sand is fine to coarse. Gravel is subangular to subrounded fin to coarse. Cobbles are subrounded.		
50 50	B4 ES1		85.76	0.80	4	Brown very sandy slightly clayey subrounded fine to coarse GRAVEL w medium cobble content. Sand is fine to coarse. Cobbles are subround		0.5
00 00	B5 ES2		85.26	1.30		to rounded.		1.0 -
.50 .50	B6 E53					Firm brown slightly gravelly sandy CLAY with low cobble content. Sand fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles are subrounded.	115	1.5
			-					2.0 -
60	В7		84.16	2.40		Very stiff brown slightly sandy slightly gravelly CLAY with low cobble content and two subangular boulders 0.3m in size. Sand is fine to coal Gravel is subangular to subrounded fine to coarse. Cobbles are subrounded.	rse.	2.5
			83.66	2.90		End of trial pit at 2.90m		3.0 -
			-					3.5
								4.0 -
								4.5
	er Strikes	Depth: 2.90	Remar		er enco	ntered	<u> </u>	•
Struck at (m)) Remarks	Width: 0.70 Length: 3.50	No gro	unawat	er encou	nterea.		
		Stability:	Termin	nation R	leason	Las	t Update	ed 🔳 =
		Stable					1/05/2023	
		Stable	ieiiiilla	accu OII I	ciusai.	04	,, 00, 2023	AU

202				ect No.		t Name:	Т	rial Pit ID
	CAUS	EWAY EOTECH		1443E	Dublin Client:	Array Wind Park - Stage 1 Onshore Site Investigations		D1 TD00
	C	SEOTECH	Coor	dinates		Array Offshore Windfarm	V	P1_TP08
/lethod:				42.94 E	1	s Representative:	SI	neet 1 of 1
rial Pitting			7240	67.07 N	Gavin a	and Doherty Geosolutions (GDG)		cale: 1:25
lant:				vation	Date:	Logger:		FINAL
.3T Excavato) mOD	07/10/	2022 MMC	_	IIIVAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
			83.80	0.10		TOPSOIL MADE GROUND: Grey gravelly slightly clayey fine to coarse SAND. Gi is subrounded fine to coarse.	ravel	-
			83.60	0.30		MADE GROUND: Firm orangish brown slightly gravelly sandy CLAY. Sa	ands	
.50 .50	B1 ES1		83.50	- 0.40 -	*****	is fine to coarse. Gravel is subangular fine to coarse. Grey slightly clayey fine to coarse SAND and subrounded fine to coar GRAVEL.	rse	0.5 —
			83.10	0.80		Stiff orangish brown slightly sandy slightly gravelly CLAY with mediur	m	
00	22			-		cobble content. Sand is fine to coarse. Gravel is subrounded fine to coarse. Cobbles are subrounded of limestone.		
.00 .00	B3 ES2			-		coarse. Cobbles are subrounded of inflestorie.		1.0
				-				
				-				
.50	B5			-				1.5 -
.50	ES3			-				
			82.10	1.80				
			02.10	1.00		Stiff brown slightly gravelly sandy CLAY with low cobble content. San fine to coarse. Gravel is subangular fine to coarse. Cobbles are	nd is	
				_		subangular.		2.0 —
				-				
				-				
				-				
50	B7			-				2.5 -
				-				
				-				
				[-				3.0 —
				-				
				-				
				-				
.50	B8			-				3.5 -
				-				
				-				
				_				40-
				-				4.5
				-				
				-				
			79.40	4.50		End of trial pit at 4.50m		4.5 -
				-				
				-				
14/	ter Strikes		Ron	narks:				
Struck at (m		Depth: 4.50		groundwat	ter encou	ntered.		
· ·		Width: 0.70						
		Length: 3.50 Stability:	Torr	nination F	Rascan	Ι.,	ast Update	d ====
		Stability:					04/05/2023	
		Stable	ierm	ninated at s	crieduled (сриі.	04/05/2023	AUS

	CAUS	EWAY EOTECH	21-2	ect No. 1443E		Name: Array Wind Park - Stage 1 Onshore Site Investigatio	ns		ial Pit ID
Method: Trial Pitting	G	EOTECH	72068	dinates 81.95 E 16.99 N	Dublin Client's	Array Offshore Windfarm Representative: nd Doherty Geosolutions (GDG)		Sh	eet 1 of 1
Plant: 13T Excavato	r			vation B mOD	Date: 07/10/	Logge 2022 MMC	r:		FINAL
Depth	Sample /	Field Records	Level	Depth	Legend	Description		Vater	
Depth (m) 0.50 0.50 0.50 1.00 1.50 1.50	B1 ES1 B3 ES2 B5 ES3 B7 B7	Field Records	89.48 87.38 87.08	Depth (m) - 0.10 - 2.20 - 2.50	Legend TOPSOIL MADE GROUND: Stiff brown slightly sandy gravelly CLAY with I content. Sand is fine to coarse. Gravel is subangular to subrout to coarse. Cobbles are subrounded. Very stiff dark grey slightly sandy gravelly CLAY. Sand is fine to Gravel is subrounded fine to coarse. Cobbles are subrounded limestone. End of trial pit at 2.50m	ow cobble nded fine	Water	10	
Wat e Struck at (m)	er Strikes Remarks	Depth: 2.50 Width: 0.70 Length: 3.00		arks:	er encou	ntered.			3.0 ——
		Stability: Stable		nination R			04/05/2		AGS

	CAUS	SEWAY GEOTECH	21-	ect No. 1443E dinates	1	: Name: Array Wind Park - Stage 1 Onshore Site Investigations		Trial Pit ID WP1_TP10		
Method: Trail Pitting		JEOIECH	- 7207. 7240	56.37 E 07.05 N	Client's	Array Offshore Windfarm s Representative: and Doherty Geosolutions (GDG)		Sh	eet 1 of 1	
Plant: 13T Excavator	r			vation 3 mOD	Date: 05/10/	Logger: 2022 MMC		FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
0.50 0.50	B1 ES1		89.18	0.20		TOPSOIL MADE GROUND: Very stiff brownish grey slightly sandy gravelly C with low cobble content, occasional boulders, and pieces of conciblocks, bricks and plastic. Sand is fine to coarse. Gravel is subanguto coarse. Cobbles and boulders are of limestone.	rete		0.5 —	
1.00 1.00	B3 ES2			-					1.0	
1.50 1.50	B5 ES3		87.88	1.50		Brown slightly gravelly slightly clayey fine to coarse SAND. Gravel subangular fine to coarse.	is		1.5 —	
2.00	B7			-		below 2.50m: light grey with pockets of laminated clay			2.0	
3.00	В8	Fast inflow at 2.70m	86.08	- 3.30				Y	- - 3.0 - -	
3.40	В9		85.88	3.50		Stiff dark grey slightly sandy slightly gravelly CLAY. Sand is fine to d Gravel is subangular fine to coarse. End of trial pit at 3.50m	coarse.		3.5 — - - - - 4.0 —	
									- - - - 4.5 — -	
				-					- -	
Wate Struck at (m) 2.70	er Strikes Remarks Fast inflow 2.70m	14/2-Jalle 1 0 70	Rem	narks:						
		Stability: Unstable		nination R			04/05/2		AGS	

200			Proj	ect No.	1	: Name:	Т	rial Pit ID
	CAUS	EWAY EOTECH		1443E		Array Wind Park - Stage 1 Onshore Site Investigations		D4 TD44
	———G	EOTECH	Coor	dinates	Client:	Array Offshore Windfarm	W	P1_TP11
Method:				84.89 E		s Representative:	Sh	neet 1 of 1
rial Pitting			7240	78.78 N		and Doherty Geosolutions (GDG)		cale: 1:25
Plant:				vation	Date:	Logger:		FINAL
L3T Excavato) mOD	04/10/	2022 MMC	<u>.</u>	FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water	
				-		TOPSOIL: Black plastic bag just under topsoil		
			86.20	0.20		MADE GROUND: Firm brown slightly gravelly sandy CLAY. Sand is fi	ne to	
				-		coarse. Gravel is subangular fine to coarse of limestone.		
).50).50 - 0.50	B1 ES1			-				0.5 —
1.30 - 0.30	E31		85.80	0.60		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine to coar Gravel is subangular fine to coarse of limestone.	se.	
				-		Graver is subangular fine to coarse of limestone.		
.00 00	B3 ES2		85.30	1.10				1.0
						Firm light greyish brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subrounded fine to coarse of limestone.		
				<u> </u> -				
.50	B5			-				1.5 -
.50 - 1.50	ES3			-				
			84.70	1.70		Stiff brown slightly gravelly sandy CLAY with low cobble content. Sa		
				-		fine to coarse. Gravel is subrounded fine to coarse of limestone. Co are subrounded of limestone.	obbies	
				-				2.0 —
				-				
				-				
.40	В7			-				
				-				2.5 -
				-				
				[3.0 —
				-				
.40	B8			-				
								3.5 -
			82.70	3.70				
						End of trial pit at 3.70m		
				<u>-</u>				4.0 —
				<u> </u> -				4.0 —
				-				
				<u>-</u>				4.5 -
				-				
				<u>-</u>				
			18-	norks:				
Struck at (m	ter Strikes Remarks	Depth: 3.70		n arks: groundwat	er encou	ntered.		
- 2-1/	No groundwa							
	encountered	d. Length: 3.50 Stability:	Torr	nination R	Pason	1,	Last Update	d = - -
		Stability:		nination K		'	04/05/2023	
		Stable	ierm	iii iateu on r	ciusdi.		04/05/2023	AUS

202			1	ect No.		Name:		Ti	rial Pit ID
	CAUS	EWAY		1443E	Dublin Client:	Array Wind Park - Stage 1 Onshore Site Investigation	ns	\A/	D1 TD12
	———G	EOTECH		dinates		Array Offshore Windfarm		vV	P1_TP12
Method:				34.50 E		s Representative:		Sh	eet 1 of 1
Trial Pitting				91.15 N	Gavin a	and Doherty Geosolutions (GDG)			cale: 1:25
Plant:	_			vation	Date:	Logger	r:		FINAL
Depth	Sample /		Level	Depth	05/10/				
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description TOPSOIL		Water	
0.50	B1		88.90	0.10		MADE GROUND: Stiff dark grey mottled brown slightly sandy g CLAY with low cobble and boulder content, and pieces of steel, and cloth. Sand is fine to coarse. Gravel is subangular to subrout to coarse.	plastic		
).50	ES1			-					- - -
1.90	ES2			-					
1.00 1.00	B3 ES3			-					1.0
1.50 1.50	B5 ES4			-					1.5 —
				- - - - - - - - - - - - - - - - - - -					2.5 -
3.20	В7		86.00	3.00		Brown gravelly very clayey fine to coarse SAND with low cobble Gravel is subrounded fine to coarse of limestone. Cobbles are subrounded.	e content.		3.0
				[ه د د				3.5 —
			85.30	3.70		Very stiff dark greyish black slightly sandy slightly gravelly CLAY	with low		
3.80	B8		85.10	3.90		cobble content. Sand is fine to coarse. Gravel is subrounded fin coarse of limestone. Cobbles are subrounded. End of trial pit at 3.90m	ne to		
				-					4.0 —
				-					
Wate Struck at (m)	Remarks No groundwate	Depth: 3.90 Width: 0.70	1	narks: groundwat	er encou	ntered.			
	encountered								
		Stability:	Terr	nination R	eason		Last Up	date	
		Stable	Term	ninated on r	efusal.		04/05/2	2023	AGS

0-6			Proie	ect No.	Project	: Name:	1	Trial Pit ID	
	CALIC	EVA/AV		1443E	1 -	Array Wind Park - Stage 1 Onshore Site Investigatio	ns		
	CAUS	CAUSEWAY ——GEOTECH		Coordinates		Client:			
-07	G	——GEOTECH			Dublin				
Method: rial Pitting Plant: 3T Excavator			73.87 E 49.07 N	1	s Representative:		Sheet 1 of 1		
		724049.07 N		Gavin and Doherty Geosolutions (GDG)			Scale: 1:25		
			wation 5 mOD	Date: 07/10/	Logge 2022 MMC	r:	FINAL		
Depth	Sample /	Field Records	Level	Depth	Legend	Description		Water	
(m)	Tests	Field Records	(mOD) 84.76	(m)	Legenu	TOPSOIL MADE GROUND: Firm dark brown slightly sandy slightly grave with a few pieces of timer and plastic. Sand is fine to coarse. G	ly CLAY	-	
.50 .50	B1 ES1			-		subrounded fine to coarse of limestone.		0.5 -	
.00	ES2			-					
50 50	B5 ES3		83.46	1.60		Red 5 inch PVC duct encountered at 1.50m. End of trial pit at 1.60m		1.5 —	
				- - - - - -				2.0 —	
				- - - - - - -				2.5	
				- - - - - - -				3.0 —	
				- - - - - -				3.5 -	
				- - - - - - - -				4.0 —	
				- - - - -				4.5 -	
				- - - - -					
Wate Struck at (m)	Remarks No groundwar encountered		No g	larks: groundwat 5 inch PV0		ntered. countered at 1.50m running at 115 degrees.			
		Stability: Stable			to services. Last U 04/05				

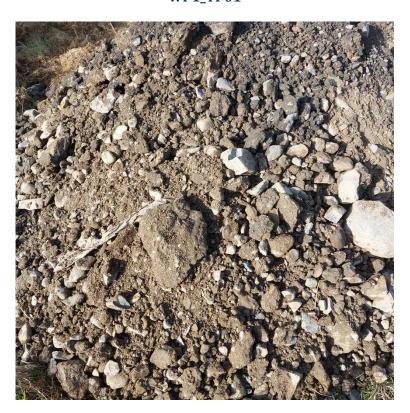
			Proj	ect No.	Project	Name:	1	Trial Pit ID		
CAUSEWAY GEOTECH		21-1443E		Dublin Array Wind Park - Stage 1 Onshore Site Investigations						
		Coor	Coordinates 725626.31 E		Client:					
Method:					7256	Array Offshore Windfarm	S			
rial Pitting			7230	723077.25 N		Client's Representative:				
Plant:			Elevation 8.78 mOD		Gavin and Doherty Geosolutions (GDG) Date: Logger:			Scale: 1:25		
T Excavator					03/10/		FINAL			
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water			
0.50 0.50	B4 ES1		8.48	0.30		TOPSOIL MADE GROUND: Stiff greyish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse.		0.5 -		
1.00 1.00	B5 ES2		7.98	0.80		MADE GROUND: Stiff brown slightly sandy slightly gravelly CLAY with lov cobble content, two boulders of granite and a few pieces of ceramic pips Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles are subrounded.		1.0 —		
1.50 1.50	B6 ES3		6.88	1.90	4 10 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Light greyish brown very gravelly slightly clayey fine to coarse SAND and low cobble and boulder content. Gravel is subangular to subrounded fin		1.5 -		
2.50	B7			- - - - - - - - - - - - - - - - - - -		to coarse. Cobbles and boulders are subrounded.		2.5 -		
3.30	B8		5.58	3.20		Light brown slightly clayey fine to coarse SAND and subrounded fine to coarse GRAVEL and low cobble content. Cobbles and boulders are subrounded. End of trial pit at 3.50m		3.0 —		
				- - - - - - - - -				4.0 —		
				-				4.5 -		
				- - -						
	<u> </u>	,	1	2011:0:						
Wat o Struck at (m)	er Strikes) Remarks	Depth: 3.50 Width: 0.50 Length: 3.50		narks: groundwat	er encou	ntered.				
Stability:			Terr	Termination Reason Last U						
		Stable	ı	ninated at so			5/2023			

			Proje	ect No.	Project	Name:	-	Trial Pit ID		
CAUSEWAY GEOTECH		21-1443E Coordinates 725866.49 E		Dublin Array Wind Park - Stage 1 Onshore Site Investigations						
				Client:		V	/P2_TP03			
Method:				1	Array Offshore Windfarm					
ial Pitting			723104.95 N Elevation 10.23 mOD		Client's Representative: Gavin and Doherty Geosolutions (GDG) Date: Logger:			Sheet 1 of 1 Scale: 1:25		
ant:										
Γ Excavator					03/10/			FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water			
()	rests		10.03	0.20		TOPSOIL MADE GROUND: Light brownish grey very sandy clayey GRAVEL with fragments of crushed concrete, red brick and one length of 15mm re Sand is fine to coarse.	:h			
	B4 ES1		9.53	0.70		Stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Grave subangular fine to coarse.	el is	0.5 -		
	B5 ES2		8.93	- - - - - - 1.30		Chiff group lighthy and a group III CLAY Cond. in fine to appear Consolid	in	1.0 —		
	B6 ES3			-		Stiff grey slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse.	13	1.5 -		
30 E	B7		8.23	2.00		Stiff brown slightly sandy slightly gravelly CLAY with low cobble cont Sand is fine to coarse. Gravel is subangular fine to coarse. Cobbles a subrounded.		2.0 —		
20 E	B8							2.5 -		
			6.73	3.50		End of trial pit at 3.50m		3.5		
				- - - - - -				4.0 —		
				- - - - - -				4.5		
				-						
Water 9	Strikes		Rem	narks:						
Struck at (m)	Remarks	Depth: 3.50 Width: 0.50 Length: 3.00	1	groundwat	er encou	ntered.				
		Stability:	Torn	nination R	leason		ast Update	ed = =		
	Stable	Term	04/05/2023							

0-3			Proj	ect No.	Project	: Name:		Tr	ial Pit ID	
CAUSEWAY GEOTECH Method: Trial Pitting		21-1443E		Dublin Array Wind Park - Stage 1 Onshore Site Investigations						
		Coor	Coordinates - 725890.26 E - 723128.75 N		Client: Dublin Array Offshore Windfarm Client's Representative: Gavin and Doherty Geosolutions (GDG)					
		7258								
		7231								
lant:			Elevation		Date: Logger:			Scale: 1:25		
T Excavator			10.86 mOD		03/10/2022 MMC			FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
			10.61	- 0.25		TOPSOIL	_			
50	B4		10.36	- - - 0.50		MADE GROUND: Stiff brown slightly sandy gravelly CLAY with a 0 piece of concrete, brick fragments up to 0.4m in size, a few small of plastic and timber. Sand is fine to coarse. Gravel is subangular rounded fine to coarse.	pieces		0.5 -	
50	ES1			-		MADE GROUND: Grey fine to coarse SAND and subangular to subrounded fine to coarse GRAVEL with fragments of brick and co	oncrete.			
00 00	B5 ES2		9.86 9.76	1.00		MADE GROUND: Grey fine to coarse clayey SAND and subangular subrounded fine to coarse GRAVEL with fragments of brick and c			1.0 —	
			9.56	1.30		MADE GROUND: Grey fine to coarse SAND and subangular to subrounded fine to coarse GRAVEL with fragments of brick and covery stiff light brown slightly sandy CLAY. Sand is fine to coarse.				
50 50	B6 ES3			-					1.5	
			9.16	1.70	0 0 0 0 4 0 0 0	Stiff brown slightly sandy gravelly CLAY with low cobble content. fine to coarse. Gravel is subangular to subrounded fine to coarse.				
				- - - -		Cobbles are subangular.			2.0 -	
30	В7			- - - - -						
			8.26	2.60		Firm to stiff light brown mottled light grey slightly sandy slightly & CLAY. Sand is fine to coarse.	gravelly		2.5	
20	B8			- - - - -					3.0 -	
			7.46	3.40		End of trial pit at 3.40m				
				-					3.5	
				- - -						
				<u>.</u>					4.0 —	
				-						
				-						
				-						
				-					4.5	
				-						
				Ė						
				-						
	er Strikes	Depth: 3.40		narks:	tor on sa	ntarad				
Struck at (m)	Remarks	Width: 0.50 Length: 3.00	NO §	groundwat	iei encou	ntereu.				
		Stability:	Torn	nination F	Reason	Т	Last Upd	ate	ı = -	
									1/0	
		Stable	lerm	ninated on r	erusal.		04/05/20	υ 2 3	MALG	

APPENDIX E TRIAL PIT PHOTOGRAPHS

WP1_TP01



WP1_TP01

WP1_TP01

WP1_TP01

WP1_TP01

WP1_TP01

WP1_TP01

WP1_TP01

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP02

WP1_TP03

WP1_TP03

WP1_TP03

WP1_TP03

WP1_TP03

WP1_TP03

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

WP1_TP04

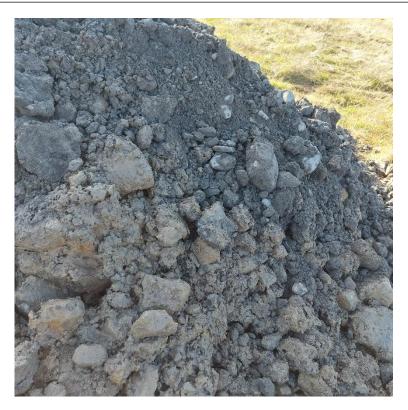
WP1_TP05

WP1_TP05

WP1_TP05

WP1_TP05

WP1_TP05



WP1_TP05

WP1_TP05

WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1 - TP06

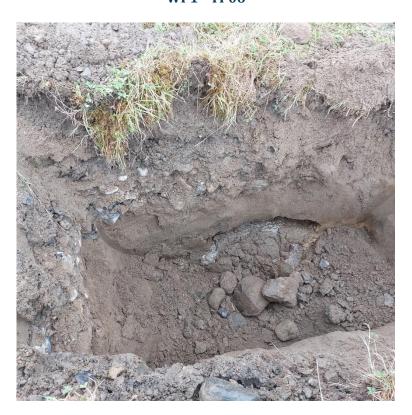
WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1 - TP06



WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1 - TP06

WP1_TP07

WP1_TP07

WP1_TP07



WP1_TP07

WP1_TP07

WP1_TP07

WP1_TP07

WP1_TP07

WP1_TP07

WP1_TP08

WP1_TP08

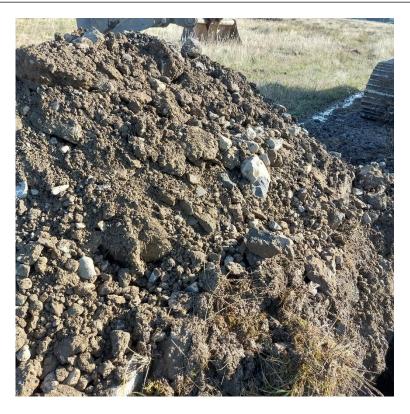
WP1_TP08

WP1_TP08

WP1_TP08

WP1_TP08

WP1_TP08



WP1_TP08

WP1_TP08

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP09

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP10

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP11

WP1_TP12

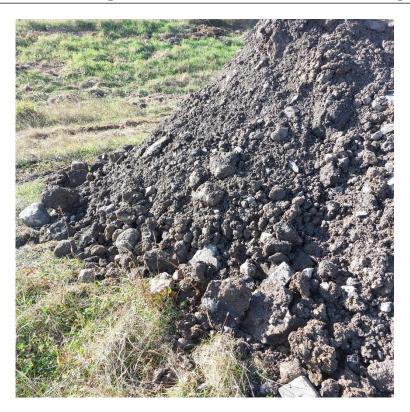
WP1_TP12

WP1_TP12

WP1_TP12

WP1_TP12

WP1_TP12



WP1_TP12

WP1_TP12

WP1_TP12

WP1_TP13

WP1_TP13

WP1_TP13

WP1_TP13

WP1_TP13

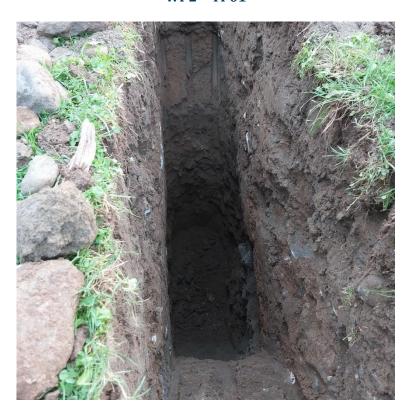
WP1_TP13

WP1_TP13

WP2 - TP01

WP2 - TP01

WP2 - TP01



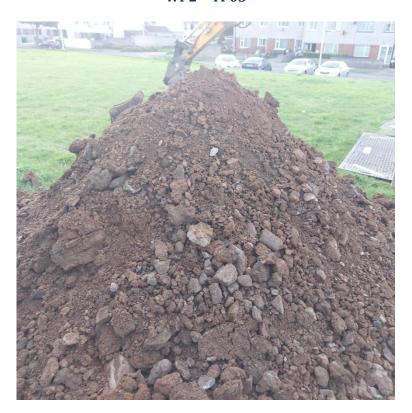
WP2 - TP01

WP2 - TP01

WP2 - TP01

WP2 - TP01

WP2 - TP01



WP2 - TP01

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP03

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04



WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

WP2 - TP04

APPENDIX F DYNAMIC PROBE LOGS

262					Project Name:			Probe II		
S A	CAUSEWA	Y	21-1443		Dublin Array Wind I	tions	WP1_TF	01		
	CAUSEWA' GEOTECH	-	Coordina		Client:				ADP	-
				Е	Dublin Array Offsho					
Method:				N	Client's Represen				Sheet 1 o	
Dynamic Probing						Geosolutions (GDG			Scale: 1:5	50
Probe Type:			Elevation		Final Depth:	Date:	Operator:		FINAL	
DPSH-B			mC	DD	0.70	26/09/2022	JD		1 111/7	•
Depth (m)	10)	2		Blows/100mm		40		Torque (Nm)	,
_	3									
	3 3 3									
- -	5 5								50	
_ _									50 50	
_ 1										
- - -										
<u>-</u>										
_ _										
- - - 2										
_										
<u>-</u> -										
- - -										
- 1 - 2 - 3 - 4 - 5										
- -										
- -										
_ _ _										
- 4										
- · -										
- - -										
- 										
_ 5										
_ _ _										
_										
_ _										
 6										
_ _										
<u>-</u>										
- - -										
- — 7										
- ' -										
- - -										
_ = _										
_ 8										
- - -										
- -										
<u> </u>										
<u>-</u>										
_ _										
- - 										
Fall Unions	Remarks									
Fall Height: 750 mm	I/CIIIAI N3									
Hammer Mass:										
64.0 kg	Termination Reason							Last Up	dated =	
Cone Diameter:								04/05/2		4
51.0 mm								04/05/2	2023	38

262			Project No. Project Name:						Prob	e ID
	ALISEWAY		21-1443			Park - Stage 1 Onsho	ore Site Investiga	itions		TP01
8	CAUSEWAY GEOTECH		Coordina	ites	Client:				WF I_	
	3131161			Е	Dublin Array Offsho					
Method:				N	Client's Represent				Sheet	
Dynamic Probing						Geosolutions (GDG)			Scale	: 1:50
Probe Type:			Elevation		Final Depth:	Date:	Operator:		FIN	171
DPSH-B			m(DD	0.60	26/09/2022	JD		1 111	1/\L
Depth (m)	10		2		30 30 30 30 A		40		Tore (N	que m)
	3									
<u> </u>	3 3 3 4									
									50 50	
_ _										
_ 1										
-										
_ 										
_ _										
2										
1 1 2 3 4										
<u>-</u>										
_										
_ _ _ 3										
_ 5										
_ _										
= =										
_ 4										
-										
_										
- -										
_ _ 5										
_ _ _										
- -										
- - - 6										
_ 0 -										
- -										
- - -										
_ _										
- - -										
_ _										
_ _ 8										
- - -										
- -										
- - - 0										
_ - -										
<u>-</u> -										
 -										
- - -										
Fall Height:	Remarks									
750 mm										
Hammer Mass:										
64.0 kg	Termination Reason							Last Up		
Cone Diameter: 51.0 mm								04/05/2	2023	AGS

Method: Dynamic Problem Proble Type: Definition Definit	0-0		Project No.	Project Name:			Prol	be ID	
Method: Dynamic Probing Sheet 1 of 1 Scale: 1:50 Spread Type: Gavin and Donery Gesculations (GDG) Scale: 1:50 Scale: 1:50 Spread Type: Depth Scale: 1:50 Spread Type: Depth Scale: 1:50 Spread Type: Sheet 1 of 1 Scale: 1:50 Spread Type: Sheet 1 of 1 Scale: 1:50 Spread Type: Scale: 1:50 Spread Type: Sprea		CALICEVAVAV	21-1443E		Dublin Array Wind Park - Stage 1 Onshore Site Investigations				
Method: Dynamic Probing Sheet 1 of 1 Scale: 1:50 Spread Type: Gavin and Donery Gesculations (GDG) Scale: 1:50 Scale: 1:50 Spread Type: Depth Scale: 1:50 Spread Type: Depth Scale: 1:50 Spread Type: Sheet 1 of 1 Scale: 1:50 Spread Type: Sheet 1 of 1 Scale: 1:50 Spread Type: Scale: 1:50 Spread Type: Sprea		CAUSEVVAI	Coordinates	Client:					
Dynamic Probing N Oavin and Doherty Gesoultons (1004) Scale: 1.50		GEOTECH	E					,, l	
Carva nation processor Carva nation Carva nat	Method:		N				Sheet	t 1 of 1	
DESH8	-	I		Gavin and Donerty			Scale	e: 1:50	
Depth min to 20 Blows/100mm to 30 43 Torque (Nm) 2 1 2 3 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							FIN	ΙΔΙ	
(m) 10 20 39 40 (Nm) -2 -3 -3 -4 -4 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	DPSH-B	1	mOD	2.70	26/09/2022	JD		V/ \L	
Fall Height: 750 mm Hammer Mass. 44 All Height: 750 mm Hammer Mass. 40.0 xg Termination Reason Last Updated	Depth						Tor	rque	
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated		10	20	30		40	(N	IM)	
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -	2 2							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -	6							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -	3 3							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - - 1	4							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- ' -	4 6	17						
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -	7							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	= -	2 3	16						
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - - 0		16						
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ Z -	10	16						
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -	1 6							
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -	7					50		
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	-						50		
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ 3 - -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated									
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ _ _								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ 4								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ 5								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ _								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	 6								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	<u>-</u> -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ _								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ _ 7								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	-								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- 8								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	-								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	<u> </u>								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	_ _								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- - - 9								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	-								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
Fall Height: 750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	- -								
750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	-								
750 mm Hammer Mass: 64.0 kg Termination Reason Last Updated	Eall Haight:	Remarks				·			
Hammer Mass: 64.0 kg Termination Reason Last Updated	750 mm								
64.0 kg Termination Reason Last Updated		1							
6 Bi /	64.0 kg					L	ast Updated		
STILLING I	Cone Diameter: 51.0 mm						04/05/2023	AGS	

			Project No.	Project Name:			Pı	obe ID
	CALICEVAVAV		21-1443E		Park - Stage 1 Onshoi	e Site Investigati	ione	
	CAUSEWAY GEOTECH		Coordinates	Client:			WP	1_TP03 DP
	GEOTECH		Е	Dublin Array Offsho				DF
Method:			N	Client's Represent			She	et 1 of 1
Dynamic Probing				Gavin and Donerty	Geosolutions (GDG)		Sca	ale: 1:50
Probe Type:			Elevation	Final Depth:	Date:	Operator:	F	INAL
DPSH-B	1		mOD	2.90	26/09/2022	JD		
Depth (m)	10		20	Blows/100mm		40		orque (Nm)
	10		- 20	30		1		(,
	1 3							
- - -	3 5 5							
- -	6 8							
_ _ 1	10							
- -	7 7							
_ _	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
- -	10							
2	10							
- 1 - 2 - 3 - 4 - 5	10 10 10 10 10 10 10 10	<u>11</u>						
_ -		13	14 16					
- -			18				50 50	
_ 3 _							50	
_ _ _								
- - -								
- -								
								
- -								
- - - 5								
_ J								
- - -								
= -								
- 6								
- - -								
_ _								
- - -								
_ _ 7								
- - -								
- - -								
- 6 - 7 - 7 - 8 - 9								
8								
_ _								
<u>-</u> -								
- - -								
_ 9								
- - -								
- -								
- - -								
E.U.U. 1.11	Remarks		1			1		
Fall Height: 750 mm	Ivellial No							
Hammer Mass:	1							
64.0 kg	Termination Reason						Last Updated	
Cone Diameter: 51.0 mm							04/05/2023	AGS

		Projec	t No.	Project Name:			Pro	obe ID
	CALICEVAVAV	21-14	43E	Dublin Array Wind P	one			
	CAUSEWAY ——GEOTECH	Coordi	nates	Client:			VVP1	_TP04 DP
	GEOTECH		Е	Dublin Array Offshor				DP
Method:			N	Client's Represent			She	et 1 of 1
Dynamic Probing					Geosolutions (GDG)		Sca	le: 1:50
Probe Type:		Eleva		Final Depth:	Date:	Operator:	FI	NAL
DPSH-B	1		mOD	2.50	26/09/2022	JD	' '	14/12
Depth				Blows/100mm			To	orque
(m)	10		20	30		40	(Nm)
- - -	2 8							
<u> </u>	10	14						
- - -	7	11						
- — 1	6 7							
- · -	5 6							
<u> </u>	5 5 5 5 5							
1 2 3 3								
- 2	2 2 2 2 3							
- - -	3 3 3							
<u> </u>	4						50 50	
- - -								
_ _ 3								
 _								
- -								
- - -								
_ 4								
_ _								
- - -								
_ _								
5 5								
-								
- - -								
6								
_ _ _								
_ _								
_ 7								
- - -								
_ -								
- -								
_ 8								
- - -								
_ -								
- 6 - 7 - 7 - 8 - 9								
_ 9								
_ _ _								
<u> </u>								
- - -								
	Pomorko		1			1		
Fall Height: 750 mm	Remarks							
Hammer Mass:	1							
64.0 kg	Termination Reason						Last Updated	
Cone Diameter: 51.0 mm							04/05/2023	AGS

			Project No.	Project Name:				Probe ID	
	CALICEVAVAV		21-1443E	Dublin Array Wind F	Dublin Array Wind Park - Stage 1 Onshore Site Investigations				
	GEOTECH	(Coordinates				w	P1_TP05	
	GEOTECH		Е	Dublin Array Offsho	re Windfarm			ADP	
Method:				Client's Represent	ative:		S	heet 1 of 1	
Dynamic Probing			N	Gavin and Doherty	Gavin and Doherty Geosolutions (GDG)				
Probe Type:			Elevation	Final Depth:	Date:	Operator:		Scale: 1:50	
DPSH-B			mOD	1.70	26/09/2022	JD		FINAL	
Depth				Blows/100mm				Torque	
(m)	10		20	30	4	0		(Nm)	
	1								
_ _									
-	3 3 3 3								
_ _	3 4 4								
- — 1	1	0							
- · -	1	0							
_ _ 	1	0 0 0 0 0 0 0 0							
_ _	1	0							
- -	1	U							
_ 2									
- - -									
1 1 2 3 3									
_ _ 3									
_ _									
- -									
-									
- - - 1									
- T -									
- -									
- - _									
5 									
_ _									
- - -									
_ 6									
- -									
- - -									
- -									
- 7									
- - -									
<u>-</u>									
- -									
- - 8									
_									
- -									
-									
_ 9 _									
- - -									
 -									
Fall Height:	Remarks								
750 mm	_								
Hammer Mass: 64.0 kg						T			
Cone Diameter:	Termination Reason						Last Updat		
51.0 mm							04/05/2023	AGS	

			Project No	. Project Name:			Probe ID		
	CALICEVAVAV		21-1443E	Dublin Array Wind	Dublin Array Wind Park - Stage 1 Onshore Site Investigations				
	CAUSEWAY ——GEOTECH		Coordinate	s Client:			WP1_TP05		
	GEOTECH		,	Dublin Array Offsh	ore Windfarm		DP		
Method:				Client's Represer	ntative:		Sheet 1 of 1		
Dynamic Probing			ı	N Gavin and Doherty	Geosolutions (GDG)		Scale: 1:50		
Probe Type:			Elevation		Date:	Operator:			
DPSH-B			mOE	1.30	26/09/2022	JD	FINAL		
Depth				Blows/100mm			Torque		
(m)	10		20	30	0	40	(Nm)		
- -	1 3								
<u>-</u>	3 3 3								
_ _ _	4								
- — 1	9	10							
- ' -	6	12					50		
- -							50 50		
 _ _									
_ _									
_ 2									
_ _ _									
- 1 - 2 - 3 - 4 - 5									
- 3									
- -									
- - -									
_ _									
= = _									
_ 4									
- - -									
 _									
- -									
- 5									
_ _ _									
<u>-</u>									
_ _									
- - - 6									
_ 6									
_ _									
 -									
- - -									
_ 7									
- -									
- 6 - 7 - 7 - 8 - 9									
- 8									
_ ~ -									
_ 									
_ =									
= 									
_ 9									
_ _									
<u> </u>									
_ _									
Fall Height:	Remarks								
750 mm									
Hammer Mass:									
64.0 kg	Termination Reason						Last Updated		
Cone Diameter:							04/05/2023 AGS		

		\	Project No	o. Pro	ect Name:					Probe ID
	SALICEVAZAV		21-1443E	Dub	Dublin Array Wind Park - Stage 1 Onshore Site Investigation					
	CAUSEWAY ——GEOTECH	-	Coordinate	s Clie	nt:					WP1_TP06
	——GEOTECH			E Dub	lin Array Offsh	ore Windfa	arm			DP
Method:			1		nt's Represer					Sheet 1 of 1
Dynamic Probing			ı	NI I	Gavin and Doherty Geosolutions (GDG)					Scale: 1:50
Probe Type:			Elevation	I	I Depth:	Date:		Operator:		ocale. 1.50
DPSH-B			mOE			26/09/	2022	JD		FINAL
			11102			20/00/	2022	OB		
Depth (m)	10		20	Blow	s/100mm 30)	4()		Torque (Nm)
- -	2 4	10								
- -		12 12								
=	9									
- - 1	6 7									
- '	2 3									
- -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
- - -										
-	5									
_ 2	5	12								
- -										50 50
- 1 - 1 - 2 - 3 - 4										
- -										
- - 3										
-										
-										
-										
- -										
_ 4										
-										
- - -										
- -										
- - 5										
-										
- - -										
- -										
_ 6										
- -										
- - -										
-										
- 7										
- -										
- - -										
- -										
-										
- 6 - 7 - 8 - 9										
- -										
_										
- -										
_ 9										
-										
- 										
- -										
- 										
Fall Hallada	Remarks									
Fall Height: 750 mm	IVelliai NS									
Hammer Mass:										
64.0 kg	Termination Reason							I	Last Up	dated ==
Cone Diameter:									04/05/2	
51.0 mm									04/05/2	2023 AGS

21-1443E Dublin Array Wind Park - Stage 1 Onshore Site Investigations Coordinates E Dublin Array Offshore Windfarm Client: Dublin Array Offshore Windfarm Client's Representative: Gavin and Doherty Geosolutions (GDG) Probe Type: DPSH-B Elevation Final Depth: Method: Dynamic Probing Final Depth: Method: Date: Depth Method: Date: Depth Method: Date: Depth Method: Date: Doperator:	Probe ID VP1_TP07 DP Sheet 1 of 1 Scale: 1:50 FINAL Torque (Nm)
Method: Dynamic Probing Probe Type: DPSH-B Depth (m) Depth (m) Depth Client's Representative: Gavin and Doherty Geosolutions (GDG) September 10	Sheet 1 of 1 Scale: 1:50 FINAL Torque
Method: Dynamic Probing Probe Type: DPSH-B Depth (m) Depth (m) Depth Client's Representative: Gavin and Doherty Geosolutions (GDG) September 10	Sheet 1 of 1 Scale: 1:50 FINAL Torque
Dynamic Probing N Gavin and Doherty Geosolutions (GDG) S Probe Type: Elevation MOD Final Depth: Fin	Scale: 1:50 FINAL Torque
Probe Type: Elevation Final Depth: Date: Operator:	FINAL Torque
Depth (m) 10 20 3.20 26/09/2022 JD	Torque
Depth (m) 10 20 30 40	Torque
(m) 10 20 30 40	Torque (Nm)
	()
3 7 10	
10	
10	
12 12	
1 14	
10 10	
2	
6 6 6	
- 3 6 10	
	50 50
4	
5	
6	
-	
7	
_ 8	
8	
_ 9	
-	
Fall Height: Remarks 750 mm	
Hammer Mass:	
64.0 kg Termination Reason Last Updat	ated
Cone Diameter: 51.0 mm 04/05/2023	

200	Project No		roject Name:					Probe II	D		
XX	ALISEWAY		21-1443E		ublin Array Wind	Park - Stage	1 Onshore	Site Investigat	tions	WP1_TF	 م _ا رد
8	CAUSEWAY ——GEOTECH		Coordinate	l i	lient:					WP1_II	
	GLOTECTI				ublin Array Offsho		n			ADI	
Method:				NI I	lient's Represen					Sheet 1 o	
Dynamic Probing				١٩	avin and Doherty		ns (GDG)			Scale: 1:	50
Probe Type:			Elevation		inal Depth:	Date:		Operator:		FINIAL	
DPSH-B			mOI	D 2	.20	26/09/20)22	JD		FINAL	-
Depth (m)	10		20		ows/100mm		40			Torque (Nm)	•
- -	1 2										
- -	3 5										
<u> </u>	5 6										
- 1	4 4										
- -	5	10									
<u>-</u>	3 4 5										
_ _	8 8										
- - - 2	8	10 10									
_ _ -		10								68 50 50	
- 1 - 2 - 3 - 4 - 5			T							50	
- - -											
- -											
- 3											
- - -											
_ -											
- -											
_ 4											
- - -											
- -											
-											
_ _ 5											
- -											
- - -											
_											
-											
_ ნ _											
<u>-</u> -											
_ -											
- -											
_ -											
- -											
- - -											
- 8											
- 6 - 7 - 7 - 8 - 9											
- - -											
_ _											
- - - 0											
9 											
_ _											
 -											
- - -											
Fall Height:	Remarks										
750 mm											
Hammer Mass:											
64.0 kg Cone Diameter:	Termination Reason								Last Up		J
51.0 mm									04/05/2	2023	GS

		Project No.	Project Name:			Prot	oe ID
	CALICEVAVAV	21-1443E		Park - Stage 1 Onshoi	e Site Investigation	nne	
	CAUSEWAY GEOTECH	Coordinates	Client:				_TP08 P
	GEOTECH	E	Dublin Array Offsho				'F
Method:		N	Client's Represent			Sheet	1 of 1
Dynamic Probing				Geosolutions (GDG)		Scale	: 1:50
Probe Type:		Elevation	Final Depth:	Date:	Operator:	FIN	I AL
DPSH-B	T	mOD	2.50	26/09/2022	JD	1 11	1 / \L
Depth			Blows/100mm			Tor	que
(m)	10	20	30		40 	(N	m)
-	1 2						
<u> </u>	3 5 6						
- -	5 5						
<u>-</u> 1	4 4						
- · -	12 12 12 12						
<u> </u>	12						
- - -	10						
- 2	10 12						
- - -	10 10 10 12						
<u>-</u>	12					50 50	
- - -						30	
- 1 - 2 - 3 - 4							
_ _ _							
- -							
- - -							
- 4							
_ _ _							
_							
= =. =							
_ _ 5							
- - -							
<u>-</u> —							
- - -							
_ 6							
_ _ _							
<u>-</u>							
_ _ _							
_ _ 7							
 _ _							
- 6 - 7 - 7 - 8 - 9							
- - -							
- - 8							
- - -							
<u>-</u>							
= = =							
_ _ 9							
- - -							
- - -							
- - -							
_							
Fall Height:	Remarks					1	
750 mm	_						
Hammer Mass: 64.0 kg	Termination Reason				T i	act Hadatad II	
Cone Diameter:					"	ast Updated	
51.0 mm						04/05/2023	AGS

267					Project Name:				Prob	e ID
S A	CAUSEWAY	Y	21-1443		Dublin Array Wind	Park - Stage 1 (Onshore Site Inv	estigations	WP1_	TP09
	CAUSEWA' GEOTECH	-	Coordina		Client:				AD	
				Е	Dublin Array Offsho					
Method:				N	Client's Represen				Sheet	
Dynamic Probing					Gavin and Doherty				Scale:	1:50
Probe Type:			Elevation		Final Depth:	Date:	Opera	ator:	FIN	ΔΙ
DPSH-B			m()D	0.80	26/09/2022	JD		1 11 1	/ \L
Depth (m)	10	1	2		Blows/100mm	1	40		Torq (Nn	jue n)
	1									
_ _	1 2									
 -	6 6									
_ _ _									50 50	
<u> </u>									-	
_ _										
- -										
_ _										
_ _ 2									_	
- - -										
- 1 - 2 - 3 - 4 - 5										
_ _										
-										
_ 3 -										
_ _										
_ -										
_										
4									-	
_ _										
- -										
- -										
- - - 5										
_ 5										
_ _										
_										
_ 6									1	
_ _										
_ _ -										
_ _										
_ _ 7									-	
<u>-</u>										
<u>-</u> -										
- - 0										
— გ - -										
_ _										
 -										
- - -										
_ 9									+	
_ _										
<u>-</u>										
- - -										
_										
Fall Height:	Remarks									
750 mm										
Hammer Mass:										
64.0 kg	Termination Reason							Last U	pdated	
Cone Diameter:								1		AGS
51.0 mm								04/03	,, ZUZU	:100

202					Project Name:				Prob	e ID
S A	CAUSEWA	Y	21-1443		Dublin Array Wind Park - Stage 1 Onshore Site Investigations				WP1	TP09
	CAUSEWA' GEOTECH	-	Coordina			Client:				. 11 03 P
				Е		Dublin Array Offshore Windfarm				
Method:				N	Client's Represen				Sheet	
Dynamic Probing						Geosolutions (GDG			Scale	: 1:50
Probe Type:			Elevation		Final Depth:	Date:	Operator:		FIN	ιΔι
DPSH-B	,		m(OD	0.80	26/09/2022	JD		1 111	·/ \L
Depth (m)	10)	2		Blows/100mm		40		Tore (N	que m)
	1									
_ _	1 4									
 -	7								50	
_ _ _									50 50	
<u> </u>										
_ _										
= -										
_ _ 2										
- - -										
_ _										
_ _										
- 1 - 2 - 3 - 4 - 5										
_ 3 _ -										
- -										
- -										
_ _ _										
_ 4										
- -										
-										
_ _ _										
- 5										
-										
- - -										
_										
-										
_ 6										
_ _ =										
 -										
_ _										
_ _										
<u>-</u>										
- - -										
_ — 8										
_										
- -										
- -										
_ 9										
- -										
_										
_ _										
_										
Fall Height:	Remarks								<u> </u>	
750 mm										
Hammer Mass:										
63.5 kg	Termination Reason							Last Up	dated	
Cone Diameter: 51.0 mm								04/05/2	2023	AGS

202	Project l		Project Name:					Probe	e ID		
	CAUSEWAY		21-1443		Dublin Array Wind Park - Stage 1 Onshore Site Investigations				ions	WP1_	TP10
	CAUSEWAY GEOTECH	1	Coordina		Client:	Client: Dublin Array Offshore Windfarm				AD	
				Ε	Client's Represen		n ———				
Method: Dynamic Probing				N	Gavin and Doherty		as (GDG)			Sheet 1	
Probe Type:			Elevation	n .	Final Depth:	Date:	15 (GDG)	Operator:		Scale:	1:50
DPSH-B				OD	1.10	26/09/20)22	JD		FINA	٩L
Depth (m)	40			E	Blows/100mm			ļ		Torq (Nm	ue
	10		2	20	30	1	40			(1411)	''
- - -	1 3										
	8			19							
_ _ _			15 15								
- 1			17 17							50 50	
										50	
<u>-</u>											
_ _ _											
- 2											
- - -											
- 1 - 2 - 3 - 4 - 5											
- - -											
_ _ 3											
_ -											
- - -											
- -											
- - - 1											
_ 4 -											
_											
- - -											
5 -											
- -											
_											
- -											
6 											
_ _											
_ -											
-											
- - -											
-											
- - -											
_ 8											
- - -											
_											
- -											
9 											
-											
- - -											
<u>-</u>											
_											
Fall Height:	Remarks										
750 mm											
Hammer Mass: 64.0 kg											
Cone Diameter:	Termination Reason								Last Up		
51.0 mm									04/05/2	023	AGS

			Project N	No.	Project Name:				Probe ID
	ALICEVAZAV		21-1443	Ε	Dublin Array Wind Park - Stage 1 Onshore Site Investigations				
	CAUSEWAY ——GEOTECH		Coordina	tes	Client:				WP1_TP10 BDP
	GEOTECH			Е	Dublin Array Offshor				BDF
Method:				N	Client's Representa				Sheet 1 of 1
Dynamic Probing						Geosolutions (GDG)			Scale: 1:50
Probe Type:			Elevation		Final Depth:	Date:	Operator:		FINAL
DPSH-B			m(DD	1.00	26/09/2022	JD		FINAL
Depth				E	Blows/100mm				Torque
(m)	10		2	0	30 I	4	10		(Nm)
	1 1								
- -	1 4								
- -	8	13							
_ _			14 16						F0
<u> </u>									50 50
- - -									
 _									
_ _									
2									
_ _									
<u> </u>									
- 1 - 1 - 2 - 3 - 4 - 5									
- 3									
= = =									
- -									
- - - 1									
_ 4 -									
_ _									
- -									
- - <u>_</u>									
_ 5									
_ _ _									
- - -									
_ 6									
_ _									
_ _ -									
<u> </u>									
7									
- 6 - 7 - 7 - 8 - 9									
<u>-</u> -									
- - -									
- 8									
- - -									
<u> </u>									
- -									
- - — a									
_ 3 -									
- - -									
_ _									
_ _									
	Domosik-						1		
Fall Height: 750 mm	Remarks								
Hammer Mass:									
64.0 kg	Termination Reason						I	Last Up	dated 🔳 💶
Cone Diameter:								04/05/2	
51.0 mm	1							04/03/2	····

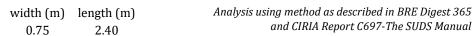
			Project N	lo.	Project Name:				Probe ID
	ALICEVAVAV		21-1443	Ε	Dublin Array Wind P	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			
	CAUSEWAY ——GEOTECH		Coordina	tes	Client:				WP1_TP10 DP
	GEOTECH			Е	Dublin Array Offshor				DF
Method:				N	Client's Represent				Sheet 1 of 1
Dynamic Probing						Geosolutions (GDG)			Scale: 1:50
Probe Type:			Elevation		Final Depth:	Date:	Operator:		FINAL
DPSH-B			mC	DD	0.90	26/09/2022	JD		FINAL
Depth				E	Blows/100mm				Torque
(m)	10		2	0	30 I	4	10 1		(Nm)
_ _									
_ _	3								
	8	13	-						
- -			16						50 50
_ 1 									50
_ _ _									
 									
- - -									
_ 2									
- 1 - 1 - 2 - 3 - 4 - 5									
<u>-</u> -									
3									
_ _									
_ _									
_ _ _									
- 4									
- - -									
<u> </u>									
_ _									
- - - 5									
_									
= = <u>-</u>									
-									
o _									
- -									
- - -									
_ _									
_ 7									
- 6 - 7 - 7 - 8 - 9									
-									
 _ _									
_ 8									
- - -									
 -									
_ _									
 9									
-									
- -									
_ _									
_									
Fall Height:	Remarks								
750 mm									
Hammer Mass:									
64.0 kg	Termination Reason							Last Up	
Cone Diameter:								04/05/2	2023 AGS

202		Project No.				Probe ID	
H H	CALISEWAY	21-1443E		Dublin Array Wind Park - Stage 1 Onshore Site Investigations			
	CAUSEWAY GEOTECH	Coordinates					
	32012011	E		Dublin Array Offshore Windfarm			
Method:		N	Client's Represent			Sheet 1 of 1	
Dynamic Probing]		Gavin and Doherty	Geosolutions (GDG)		Scale: 1:50	
Probe Type:		Elevation	Final Depth:	Date:	Operator:	FINAL	
DPSH-B	_	mOD	3.60	26/09/2022	JD	1 1147 (E	
Depth (m)	10	20	Blows/100mm	4	0	Torque (Nm)	
	1						
- -	3						
- -	2 2						
<u> </u>	1 2						
_ 1	3 3						
- - -	4						
_ -	3 4 4						
- -	2 3						
_ 2	7						
- -	7 7						
- -	7 7 7						
-	7 9						
- - 3	7 10					_	
_	8 11	16					
- 1 - 2 - 3 - 4		15				50 50	
- - -						50	
- 4							
- - -							
<u>-</u>							
_ _ _							
- 5							
-							
- -							
- -							
- - - 6							
_ U -							
- - -							
- -							
- - _,							
_ / _ -							
- -							
_ - -							
- -							
_ 8							
- -							
_							
- - -							
- 6 - 7 - 7 - 8 - 9							
- -							
- - -							
-							
-							
Fall Height:	Remarks						
750 mm							
Hammer Mass:							
64.0 kg Cone Diameter:	Termination Reason					Updated	
51.0 mm					04	^{(05/2023} AGS	

		Project No.	Project Name:			Probe ID
	CALICEVAVAV	21-1443E	Dublin Array Wind F	ne l		
	CAUSEWAY GEOTECH	Coordinates	Client:			WP1_TP12
	GLOTECTI	E	Dublin Array Offsho			
Method:		N	Client's Represent			Sheet 1 of 1
Dynamic Probing				Geosolutions (GDG)		Scale: 1:50
Probe Type: DPSH-B		Elevation mOD	Final Depth: 2.80	Date: 26/09/2022	Operator: JD	FINAL
Depth			Blows/100mm	20/00/2022	0.0	Torque
(m)	10	20	30	4	10	(Nm)
	1					
- - -	6 10	2				
- - -	9 10	2				
- -	5 5					
_ 1 	7					
<u>-</u> -	5 5 5					
- - -	5 8					
-	3 3					
_ 2 -	6 6					
- -	2 2 2 3					
	3 3 4					50
- 1 - 2 - 3 - 4						50 50
_ 3 -						
- - -						
<u>-</u>						
- - - 1						
- - -						
- - -						
- -						
_ 5						
 - -						
- -						
- - -						
- 6						
_ _ _						
<u>-</u> -						
- - -						
7						
_ _						
- - -						
- -						
- 6 - 7 - 7 - 8 - 9						
- - -						
_						
- -						
_ 9						
- - -						
_ - -						
- - -						
	Pomarke				I	
Fall Height: 750 mm	Remarks					
Hammer Mass:	1					
64.0 kg	Termination Reason				L	ast Updated
Cone Diameter: 51.0 mm						04/05/2023 AGS

		Project No	. Project Name:			Probe ID	
	SALICEVAVAV	21-1443E	Dublin Array Wind P	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			
	CAUSEWAY ——GEOTECH	Coordinate	s Client:	Client:			
	GEOTECH	E	Dublin Array Offshor	re Windfarm		ADP	
Method:			Client's Represent	ative:		Sheet 1 of 1	
Dynamic Probing		, n	Gavin and Doherty	Geosolutions (GDG)		Scale: 1:50	
Probe Type:		Elevation		Date:	Operator:		
DPSH-B		mOD	1.70	26/09/2022	JD	FINAL	
Depth			Blows/100mm			Torque	
(m)	10	20	30	4)	(Nm)	
_ _							
- -							
_ _ _	1 2						
- — 1	2 2 2 2 3						
- · -	2 7						
- -	6 6						
- - -		16				50 50	
- -						50	
_ 2							
= = =							
_ -							
- -							
_ _ 3							
_ _							
- -							
-							
- - - 1							
- " -							
- - -							
- 1 - 2 - 3 - 4							
_ 5 _							
- - -							
- - -							
_ 6							
- -							
- -							
_ _							
_ _ 7							
- - -							
<u>-</u>							
- -							
- - 8							
_ U							
- -							
-							
- 6 - 7 - 7 - 8 - 9							
- - -							
 -							
_ _ _							
-							
Fall Height:	Remarks						
750 mm							
Hammer Mass: 64.0 kg					1.5	· · · · · · · · · · · · · · · · · · ·	
Cone Diameter:	Termination Reason					Updated	
51 0 mm					04	^{/05/2023} AGS	

		Pr	oject No.	Project Name:			F	Probe ID
	CALICEVAVAV	. 2	1-1443E	Dublin Array Wind Pa	ark - Stage 1 Onshore	Site Investigat	ione	
	CAUSEWAY ——GEOTECH	Co	ordinates	Client:			VVF	21_TP13
	GEOTECH		Е	Dublin Array Offshore	e Windfarm			DP
Method:				Client's Representa	ative:		Sh	neet 1 of 1
Dynamic Probing			N	Gavin and Doherty G	Geosolutions (GDG)			cale: 1:50
Probe Type:		E	levation	Final Depth:	Date:	Operator:		
DPSH-B			mOD	1.60	26/09/2022	JD		FINAL
Depth				Blows/100mm	<u> </u>			Torque
(m)	10		20	30	40)		(Nm)
_	1							
- -								
_	1 2							
- -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
- - 1	2 2							
- - -	6 6							
_ 	6	10					50	,
- 1 - 2 - 3 - 4 - 5							50 50	i i
- - - 2								
_ _ -								
- -								
-								
_ 3 _								
-								
_ -								
-								
_ 4								
- -								
- - -								
_ -								
- 5								
- - -								
<u>-</u>								
- -								
- - - 6								
_ 0								
- -								
 - -								
_								
_ 7								
- - -								
- -								
- - -								
_ 8								
- -								
- - -								
_ _								
- 6 - 7 - 8 - 9								
<u>-</u>								
_ _								
= - -								
-								
Fall Height:	Remarks							
750 mm	_							
Hammer Mass:								
64.0 kg	Termination Reason						Last Update	ed 🔳
Cone Diameter:							04/05/2023	AGS


APPENDIX G SOAKAWAY TEST RESULTS

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

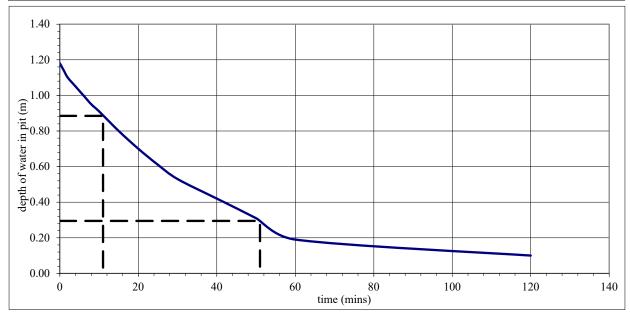
Test Location: WP1-TP03 (Test 1) **Test Date:** 04 October 2022

test pit top dimensions 0.75 2.40 test pit base dimensions 0.75 1.30

test pit depth (m) 1.70 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.52	1.18
1	0.56	1.14
2	0.60	1.10
4	0.65	1.05
6	0.70	1.00
8	0.75	0.95
10	0.79	0.91
15	0.90	0.80
20	1.00	0.70
25	1.09	0.61
30	1.17	0.53
40	1.28	0.42
50	1.39	0.31
60	1.51	0.19
120	1.60	0.10

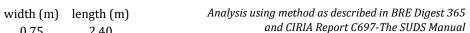
From graph below:


test start - 75% depth at 0.885 m water depth time is 11.0 minutes

test end - 25% depth at 0.295 m water depth time is 51.0 minutes

test infiltration rate (q) = 0.304 m/h

*pit collapsed to 1.60m


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
11	0.82	0.885	40	0.74	3.68	5.1E-03	0.304
51	1.41	0.295	40	0.74	5.00	5.1E-05	0.304

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP03 (Test 2) **Test Date:** 04 October 2022

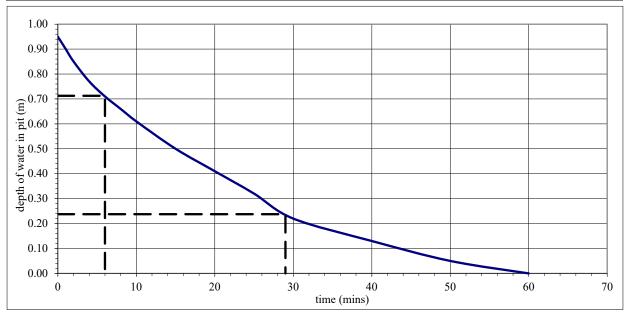
test pit top dimensions 0.75 2.40 test pit base dimensions 0.75 1.30

test pit depth (m) 1.60 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.65	0.95
1	0.70	0.90
2	0.75	0.85
4	0.83	0.77
6	0.89	0.71
8	0.94	0.66
10	0.99	0.61
15	1.10	0.50
20	1.19	0.41
25	1.28	0.32
30	1.38	0.22
40	1.47	0.13
50	1.55	0.05
60	1.60	0.00

From graph below:

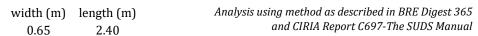
test start - 75% depth at


0.7125 m water depth time is 6.0 minutes

test end - 25% depth at

0.2375 m water depth time is 29.0 minutes

test infiltration rate (q) = 0.485 m/h


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
6	0.89	0.7125	23	0.58	3.12	8.1E-03	0.485
29	1.36	0.2375	23	0.56	5.12	0.1E-U3	0.465

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP04 (Test 1) **Test Date:** 04 October 2022

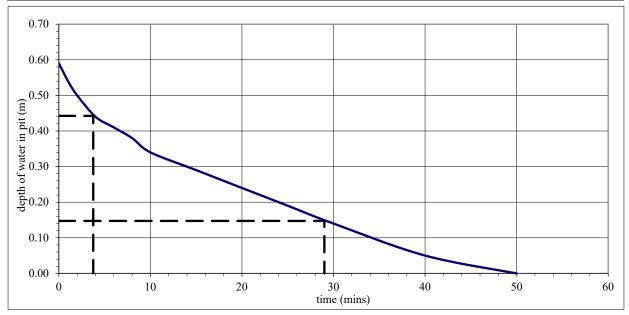
test pit top dimensions 0.65 2.40 test pit base dimensions 0.65 1.20

test pit depth (m) 1.50 depth to groundwater before adding water (m) = Dry

depth to	depth of		
water surface	water in pit		
(m)	(m)		
0.91	0.59		
0.96	0.54		
1.00	0.50		
1.06	0.44		
1.09	0.41		
1.12	0.38		
1.16	0.34		
1.21	0.29		
1.26	0.24		
1.31	0.19		
1.36	0.14		
1.45	0.05		
1.50	0.00		
·			
_	_		
	·		
_	_		
	water surface (m) 0.91 0.96 1.00 1.06 1.09 1.12 1.16 1.21 1.26 1.31 1.36 1.45		

From graph below:

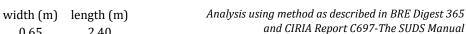
test start - 75% depth at


0.4425 m water depth time is 3.8 minutes

test end - 25% depth at

0.1475 m water depth time is 29.0 minutes

test infiltration rate (q) = 0.334 m/h


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
3.75	1.06	0.4425	25.25	0.28	1.96	5.6E-03	0.334
29	1.35	0.1475		0.28	1.90	5.0E-U5	0.554

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP04 (Test 2) **Test Date:** 04 October 2022

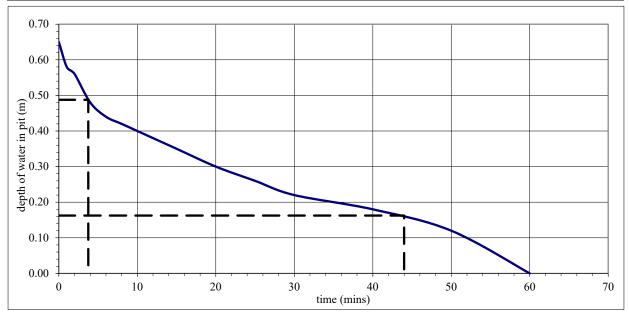
 $\begin{array}{ccc} \text{test pit top dimensions} & 0.65 & 2.40 \\ \text{test pit base dimensions} & 0.65 & 1.20 \\ \end{array}$

test pit depth (m) 1.50 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.85	0.65
1	0.92	0.58
2	0.94	0.56
4	1.02	0.48
6	1.06	0.44
8	1.08	0.42
10	1.10	0.40
15	1.15	0.35
20	1.20	0.30
25	1.24	0.26
30	1.28	0.22
40	1.32	0.18
50	1.38	0.12
60	1.50	0.00

From graph below:

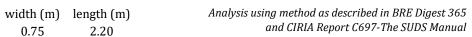
test start - 75% depth at


0.4875 m water depth time is 3.8 minutes

test end - 25% depth at

0.1625 m water depth time is 44.0 minutes

test infiltration rate (q) = 0.220 m/h


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
3.75	1.01	0.4875	40.25	0.31	2.09	3.7E-03	0.220
44	1.34	0.1625		0.51	2.09	3.7E-03	0.220

Project No.: 21-1443E

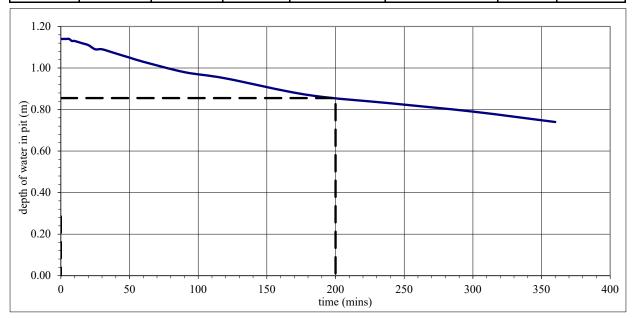
Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP06 (Test 1) **Test Date:** 05 October 2022

test pit top dimensions 0.75 2.20 test pit base dimensions 0.75 1.50

test pit depth (m) 1.50 depth to groundwater before adding water (m) = Dry

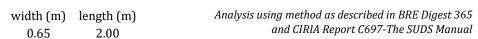
	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.36	1.14
1	0.36	1.14
2	0.36	1.14
4	0.36	1.14
6	0.36	1.14
8	0.37	1.13
10	0.37	1.13
15	0.38	1.12
20	0.39	1.11
25	0.41	1.09
30	0.41	1.09
40	0.43	1.07
50	0.45	1.05
60	0.47	1.03
90	0.52	0.98
120	0.55	0.95
180	0.63	0.87
240	0.67	0.83
300	0.71	0.79
360	0.76	0.74
	depth to	depth of


From graph below:

test start - 75% depth at 0.855 m water depth time is 200.0 minutes

test end - 25% depth at 0.285 m water depth time is not determined

infiltration rate (q) is very low


360	0.76	0./4					
	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m^3)	(m^2)	(m/min)	(m/h)
200	0.65	0.855					
	1.22	0.285					

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP10 (Test 1) **Test Date:** 05 October 2022

test pit top dimensions 0.65 2.00 test pit base dimensions 0.65 1.00

test pit depth (m) 1.50 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.38	1.12
1	0.41	1.09
2	0.44	1.06
4	0.49	1.01
6	0.54	0.96
8	0.60	0.90
10	0.65	0.85
15	0.78	0.72
20	0.91	0.59
25	1.06	0.44
30	1.26	0.24
40	1.32	0.18

From graph below:

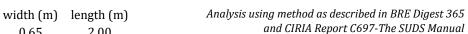
test start - 75% depth at 0.84 m water depth

time is 10.5 minutes

test end - 25% depth at 0.28 m water depth time is 28.5 minutes

test infiltration rate (q) = 0.604 m/h

*pit collapsed to 1.32m


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m^3)	(m^2)	(m/min)	(m/h)
10.5	0.66	0.84	18	0.50	2.76	1.0E-02	0.604
28.5	1.22	0.28	18	0.50	2.76	1.UE-UZ	0.004

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP10 (Test 2) **Test Date:** 05 October 2022

test pit top dimensions 0.65 2.00 test pit base dimensions 0.65 1.00

test pit depth (m) 1.32 depth to groundwater before adding water (m) = Dry

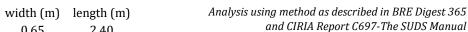
	depth to water surface	depth of water in pit
time (mins)	(m)	(m)
0	0.36	0.96
1	0.38	0.94
2	0.40	0.92
4	0.43	0.89
6	0.46	0.86
8	0.49	0.83
10	0.53	0.79
15	0.60	0.72
20	0.68	0.64
25	0.76	0.56
30	0.86	0.46
40	1.01	0.31
50	1.32	0.00
	·	,
	·	


From graph below:

test start - 75% depth at 0.72 m water depth time is 15.0 minutes

 $\begin{array}{c} \text{test end - 25\% depth at} \\ 0.24 \ m \ water \ depth \\ \text{time is} \ 42.5 \ minutes \end{array}$

test infiltration rate (q) = 0.379 m/h


	1 .1 .	1 .1 6		1 1 6	I A C 11 1		
	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
15	0.60	0.72	27.5	0.43	2.45	6.3E-03	0.379
42.5	1.08	0.24	27.3	0.43	2.45	0.3E-03	0.379

Project No.: 21-1443E

Site: DUB ARR Onshore Site Investigations

Test Location: WP1-TP11 (Test 1) **Test Date:** 04 October 2022

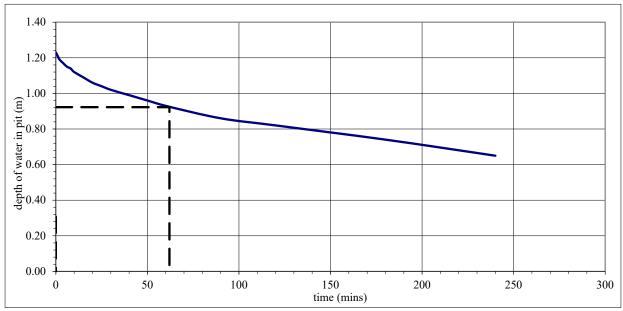
test pit top dimensions 0.65 2.40 test pit base dimensions 0.65 1.30

test pit depth (m) 1.70 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.47	1.23
1	0.49	1.21
2	0.51	1.19
4	0.53	1.17
6	0.55	1.15
8	0.56	1.14
10	0.58	1.12
15	0.61	1.09
20	0.64	1.06
25	0.66	1.04
30	0.68	1.02
40	0.71	0.99
50	0.74	0.96
60	0.77	0.93
90	0.84	0.86
120	0.88	0.82
180	0.96	0.74
240	1.05	0.65

From graph below:

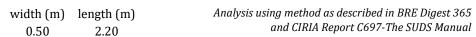
test start - 75% depth at


0.9225 m water depth time is 62.0 minutes

test end - 25% depth at

0.3075 m water depth time is not determined

infiltration rate (q) is very low


	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m^3)	(m^2)	(m/min)	(m/h)
62	0.78	0.9225					
	1.39	0.3075					

Project No.: 21-1443E

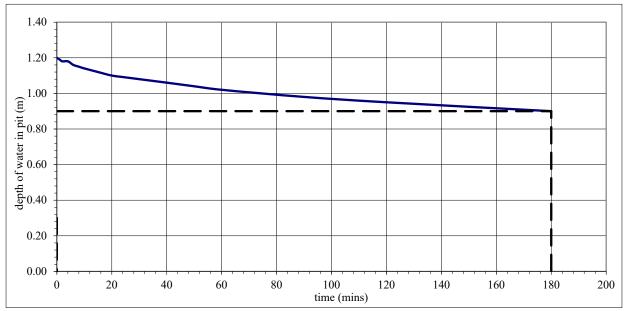
Site: DUB ARR Onshore Site Investigations

Test Location: WP2-TP04 (Test 1) **Test Date:** 03 October 2022

 $\begin{array}{ccc} \text{test pit top dimensions} & 0.50 & 2.20 \\ \text{test pit base dimensions} & 0.50 & 0.80 \\ \end{array}$

test pit depth (m) 1.50 depth to groundwater before adding water (m) = Dry

	depth to	depth of
	water surface	water in pit
time (mins)	(m)	(m)
0	0.30	1.20
1	0.31	1.19
2	0.32	1.18
4	0.32	1.18
6	0.34	1.16
8	0.35	1.15
10	0.36	1.14
15	0.38	1.12
20	0.40	1.10
25	0.41	1.09
30	0.42	1.08
40	0.44	1.06
50	0.46	1.04
60	0.48	1.02
90	0.52	0.98
120	0.55	0.95
180	0.60	0.90


From graph below:

test start - 75% depth at
0.9 m water depth
time is 180.0 minutes

test end - 25% depth at 0.3 m water depth time is not determined

infiltration rate (q) is very low

	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m^2)	(m/min)	(m/h)
180	0.60	0.9					
	1.20	0.3					

APPENDIX H PLATE LOAD TEST RESULTS

CBR TEST REPORT

BHP Ref. No.:

Order No.:

Item:

Date Tested:

Test Specification:

Analysing Testing Consulting Calibrating

22/10/029-1

Not Supplied 04/10/2022

Client Spec.

Formation

BHP Laboratories Ltd New Road Thomondgate Limerick

Fax +353 61 455447

Ireland Tel +353 61 455399

E Mail jamespurcell@bhp.ie

FAO: Mr. Sean Ross

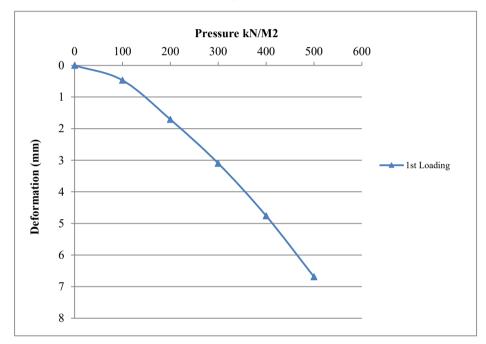
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP02

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	0.47
200	1.71
300	3.10
400	4.76
500	6.69

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	6.69
Estimated CBR % @ 1.25mm deformation	20
$K = (KN/m^2/m)$ @ 1.25mm deformation	80848
$K = (MN/m^2/m)$ @ 1.25mm deformation	81

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 05/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

Analysing Testing Consulting Calibrating

BHP Laboratories Ltd

New Road Thomondgate Limerick Ireland Tel +353 61 455399

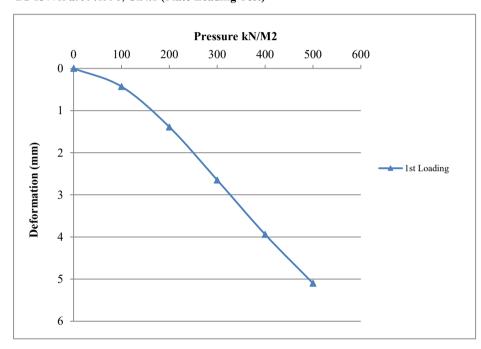
Fax +353 61 455447 E Mail jamespurcell@bhp.ie

Client: Causeway Geotech Ltd

8 Drumahiskey Rd, Bendooragh, Ballymoney Northern Ireland

22/10/029-2 BHP Ref. No.: Order No.: Not Supplied 04/10/2022 **Date Tested: Test Specification:** Client Spec. Item: Formation

FAO: Mr. Sean Ross


Client Reference: Ballyogan Landfill, Dublin

Location Reference: Site CBR Test Location - WP1 - TP03

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	0.43
200	1.39
300	2.65
400	3.94
500	5.10

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	5.10
Estimated CBR % @ 1.25mm deformation	24
K= (KN/m ² /m) @ 1.25mm deformation	91760
K= (MN/m ² /m) @ 1.25mm deformation	92

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 05/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.: 22/10/029-4

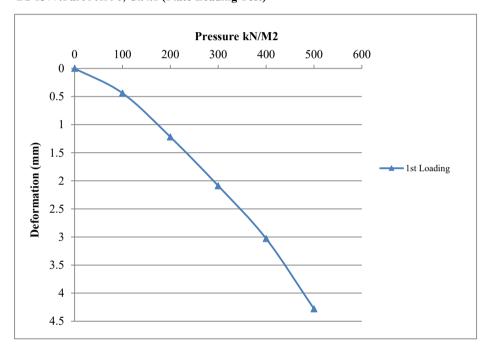
Order No.: Not Supplied 04/10/2022 **Date Tested: Test Specification:** Client Spec.

Bendooragh, Ballymoney Northern Ireland Item: Formation

FAO: Mr. Sean Ross

Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd


8 Drumahiskey Rd,

Location Reference: Site CBR Test Location - WP1 - TP05

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Testing	
Consulti	ing
Calibrat	ing

Analysing

BHP Laboratories Ltd New Road Thomondgate Limerick Ireland Tel +353 61 455399

Fax +353 61 455447 E Mail jamespurcell@bhp.ie

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	0.44
200	1.22
300	2.09
400	3.03
500	4.28

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	4.28
Estimated CBR % @ 1.25mm deformation	29
K= (KN/m ² /m) @ 1.25mm deformation	100688
K= (MN/m ² /m) @ 1.25mm deformation	101

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 05/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.:

22/10/029-3

Order No.: Not Supplied
Date Tested: 04/10/2022
Test Specification: Client Spec.
Item: Formation

FAO: Mr. Sean Ross

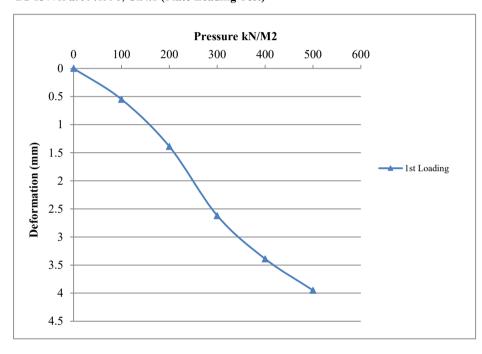
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP06

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Analysing	
Testing	
Consulting	
Calibrating	

BHP Laboratories Ltd New Road Thomondgate Limerick Ireland Tel +353 61 455399 Fax +353 61 455447

E Mail jamespurcell@bhp.ie

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	0.55
200	1.39
300	2.62
400	3.39
500	3.95

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	3.95
Estimated CBR % @ 1.25mm deformation	24
K= (KN/m ² /m) @ 1.25mm deformation	90768
$K = (MN/m^2/m)$ @ 1.25mm deformation	91

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 05/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.:

Order No.:

Item:

Date Tested:

Test Specification:

Consulting Calibrating

Analysing Testing

3H

BHP Laboratories Ltd

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax +353 61 455447 E Mail jamespurcell@bhp.ie

22/10/050-1 Not Supplied

05/10/2022

Client Spec.

Clay

FAO: Mr. Sean Ross

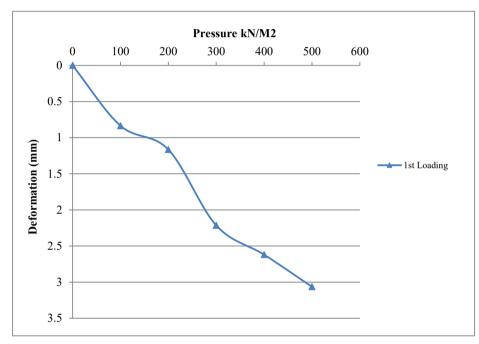
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP9

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	0.84
200	1.17
300	2.22
400	2.62
500	3.07

Maximum Applied Pressure (kN/m ²)	500
Maximum Deformation (mm)	3.07
Estimated CBR % @ 1.25mm deformation	30
K= (KN/m²/m) @ 1.25mm deformation	103168
$K = (MN/m^2/m)$ @ 1.25mm deformation	103

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 06/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.: 22/10/050-2

Order No.: Not Supplied 05/10/2022 **Date Tested: Test Specification:** Client Spec.

Item: Clay

Analysing Testing Consulting Calibrating

BHP Laboratories Ltd New Road Thomondgate Limerick

Ireland Tel +353 61 455399 Fax +353 61 455447 E Mail jamespurcell@bhp.ie

FAO: Mr. Sean Ross

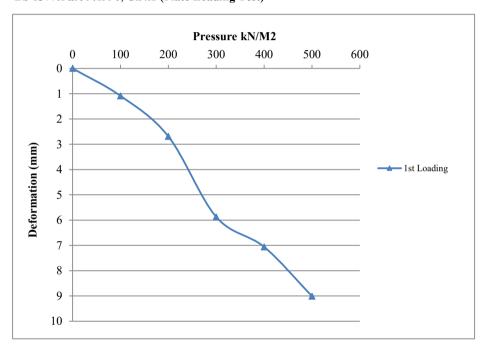
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP10

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	1.09
200	2.69
300	5.88
400	7.06
500	9.01

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	9.01
Estimated CBR % @ 1.25mm deformation	10
$K= (KN/m^2/m)$ @ 1.25mm deformation	54560
$K = (MN/m^2/m)$ @ 1.25mm deformation	55

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 06/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.: 22/10/050-3

Order No.: Not Supplied
Date Tested: 05/10/2022
Test Specification: Client Spec.

Item: Clay

FAO: Mr. Sean Ross

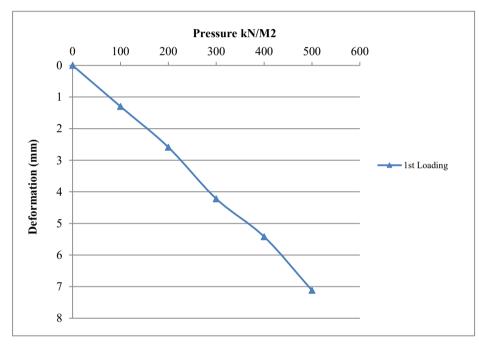
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP12

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Testing	
Consulting	
Calibrating	

Analysing

BHP Laboratories Ltd New Road Thomondgate Limerick Ireland Tel +353 61 455399

Fax +353 61 455447 E Mail jamespurcell@bhp.ie

Bearing Pressure kN/m²	Plate Settlement (mm)
0	0
100	1.30
200	2.59
300	4.22
400	5.42
500	7.12

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	7.12
Estimated CBR % @ 1.25mm deformation	8
$K = (KN/m^2/m)$ @ 1.25mm deformation	47616
$K = (MN/m^2/m)$ @ 1.25mm deformation	48

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager For and On Behalf of BHP Laboratories Laboratory Technical Manager Issue Date: 06/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

CBR TEST REPORT

BHP Ref. No.: 22/10/050-4

Order No.: Not Supplied
Date Tested: 05/10/2022
Test Specification: Client Spec.

Item: Clay

FAO: Mr. Sean Ross

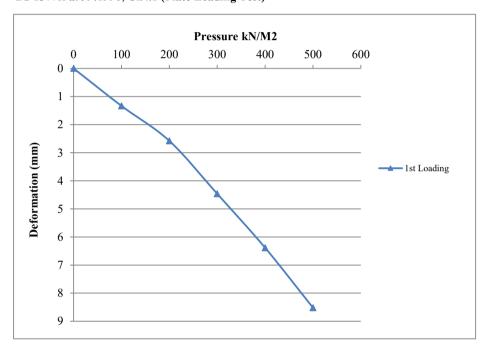
Client Reference: Ballyogan Landfill, Dublin

Causeway Geotech Ltd

8 Drumahiskey Rd,

Bendooragh,

Ballymoney


Northern Ireland

Location Reference: Site CBR Test Location - WP1 - TP13

Type of Reaction Load: Excavator

Plate Diameter: 450mm

BS 1377:Part 9:1990, Cl.4.1 (Plate Loading Test)

Tel +353 61 455399							
Fax +353 61 455447							
urcell@bhp.ie							
Plate							
Settlement							

(mm)

0

1.34

2.58

4.47

6.39 8.52

BHP Laboratories Ltd

Analysing Testing

Consulting Calibrating

New Road Thomondgate

Limerick

kN/m²

0

100

200

300

400

500

Maximum Applied Pressure (kN/m²)	500
Maximum Deformation (mm)	8.52
Estimated CBR % @ 1.25mm deformation	7
$K = (KN/m^2/m)$ @ 1.25mm deformation	46128
$K = (MN/m^2/m)$ @ 1.25mm deformation	46

Remarks:

CBR calculated in in accordance with Part 2 DMRB Volume 7: Part 2 HD 25/94.

Time Recorded at each interval was 2 minutes.

Tony Hehir

Seamus O' Connell

Field Testing Services Manager
For and On Behalf of BHP Laboratories

Laboratory Technical Manager Issue Date: 06/10/2022

Tested by BHP Laboratories, Limerick (c/o above address) Phone:(061) 455399 Fax:(061) 455447

This test report shall not be duplicated in full without the permission of the test laboratory.

APPENDIX I GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE Causeway Geotech Ltd

8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

> Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

16 November 2022

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations						
Project No.:	21-1443E					
Client:	Dublin Array Offshore Windfarm					
Engineer:	Gavin & Doherty Geosolutions (GDG)					

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 30/09/2022 and 24/10/2022.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Report Reference: Schedule 1 - FINAL

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	16
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	8
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	8
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	8

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	BRE Test - Suite A		3
SOIL – Subcontracted to Celtest Company (UKAS 0494)	Determination of Thermal Conductivity by Thermal Needle Probe Procedure (5 Point method at various Moisture Content).	ASTM - D5334-14	13

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

		Sar	nple			Dens	ity	W	Passing	LL	PL	ΡI	Particle	0
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry	%	425μm %	%	%	%	density Mg/m3	Casagrande Classification
WP2_BH01	11	6.00		D	Brown sandy slightly gravelly silty CLAY.	Ivig/II		57.0	72	32 -1pt	16	16	Wg/IIIO	CL
WP2_BH01	14	7.50		D	Brown sandy slightly gravelly silty CLAY.			10.0						
WP2_BH01	21	10.50		D	Brown sandy slightly gravelly silty CLAY.			10.0						
WP2_BH01	32	16.50		D	Brownish grey sandy slightly gravelly silty CLAY.			8.7	68	29 -1pt	14	15		CL
WP2_BH02	25	6.00		D	Brown slightly gravelly clayey fine to coarse SAND.			16.0						
WP2_BH02	26	9.00		D	Orangish brown sandy slightly gravelly silty CLAY.			20.0	100	37 -1pt	23	14		CI
WP2_BH02	27	10.50		D	Brown sandy gravelly silty CLAY.			12.0						
WP2_BH02	33	18.00	19.50	В	Dark grey sandy gravelly silty CLAY.			7.6	66	26 -1pt	15	11		CL
WP2_BH03	54	4.50		D	Dark brown sandy slightly gravelly silty CLAY.			13.0	93	30 -1pt	14	16		CL
WP2_BH03	55	5.00		D	Dark brown sandy slightly gravelly silty CLAY.			12.0						
WP2_BH03	57	7.50		D	Brown slightly gravelly clayey fine to coarse SAND.			6.2						
WP2_BH03	60	9.50		D	Brown sandy slightly gravelly silty CLAY.			10.0	77	31 -1pt	17	14		CL

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

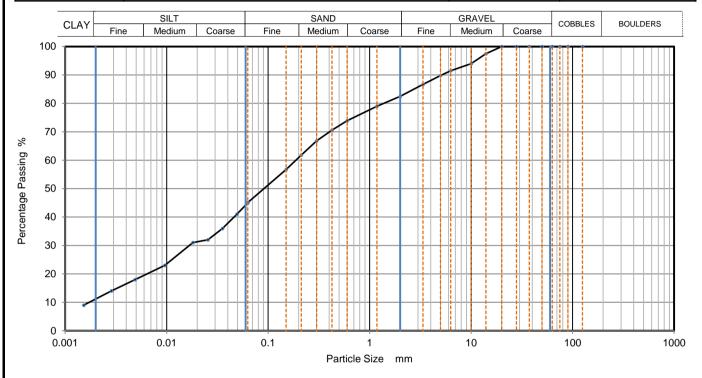
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 24/10/2022 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations


21-14	21-1443E Dublin Afray Wind Park - Stage 1 Onshore Site Investigations													
I I-I- N-		Sar	nple	I	Caraina a Danasiatian	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande
Hole No.	Ref	Тор	Base	Туре	Specimen Description	Mg/m		%	%	%	%	%	Mg/m3	Classification
WP2_BH04	57	3.00	3.45	D	Brown sandy slightly gravelly silty CLAY.			13.0						
WP2_BH04	3	4.50	4.95	D	Brown sandy slightly gravelly silty CLAY.			14.0	90	29 -1pt	14	15		CL
WP2_BH04	4	6.00	6.45	D	Brown slightly gravelly clayey fine to coarse SAND.			15.0	59	23 -1pt	14	9		CL
WP2_BH04	5	7.50	7.85	D	Brown sandy slightly gravelly silty CLAY.			9.9						

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

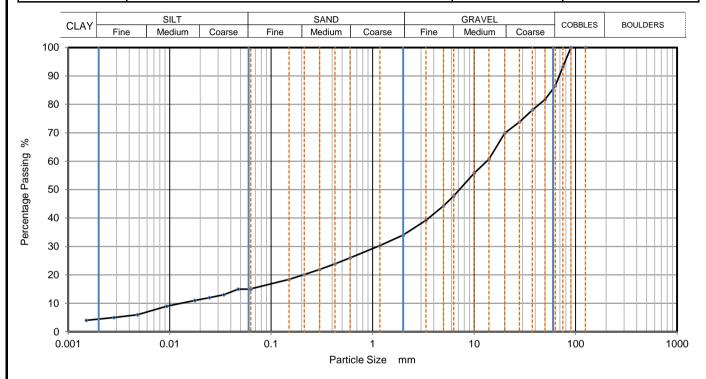
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 24/10/2022 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

CAUSEWAY	DARTICLE CIZE DISTRIBUTION				Job Ref		21-1443E		
——GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION					WP2_BH01		
Site Name	Dublin Array Wind Par	k - Stage 1 Onsho	re Site Investigations		Sample No.		17		
Specimen Description	Brown candy clightly gray	D. L. P. Liller, H. W. GLAV					8.50		
Specimen Description	Brown Sandy Slightly grav	Brown sandy slightly gravelly silty CLAY.				Base	9.50		
Specimen Reference	2	Specimen Depth	8.5	m	Sample Type		В		
Test Method	BS1377:Part 2:1990, clau	ses 9.2 and 9.5			KeyLAB ID		Caus2022093055		

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	45			
90	100	0.04935	41			
75	100	0.03559	36			
63	100	0.02548	32			
50	100	0.01813	31			
37.5	100	0.00959	23			
28	100	0.00488	18			
20	100	0.00285	14			
14	98	0.00152	9			
10	94					
6.3	92					
5	90					
3.35	87					
2	83					
1.18	79					
0.6	74	Particle density	(assumed)			
0.425	71	2.65	Mg/m3			
0.3	67					
0.212	62					
0.15	57					
0.063	45					

Dry Mass of sample, g	509
	•

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	17.5
Sand	37.4
Silt	33.7
Clay	11.4


Grading Analysis		
D100	mm	
D60	mm	0.188
D30	mm	0.0171
D10	mm	0.00171
Uniformity Coefficient		110
Curvature Coefficient		0.91

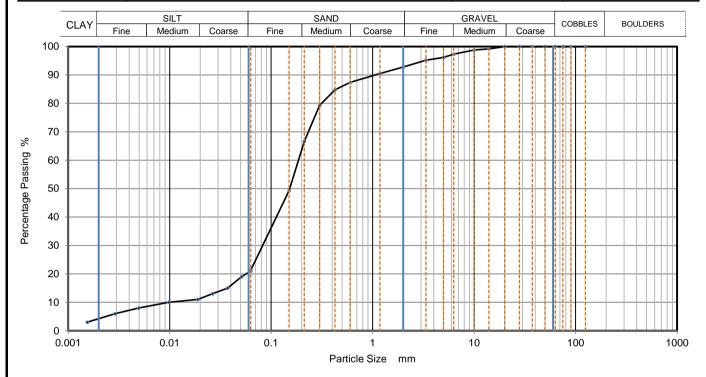
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref		21-1443E	
——GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP2_BH01
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		24	
Specimen Description	Prown sandy gravally silts	Brown sandy gravelly silty CLAY.			Sample	Тор	12.00
Specimen Description	Brown sandy graveny sitty				Depth (m)	Base	13.30
Specimen Reference	2 Specimen 12 m			Sample Type		В	
Test Method	Test Method BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022093057	

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	15	
90	100	0.04735	15	
75	93	0.03420	13	
63	87	0.02468	12	
50	82	0.01768	11	
37.5	78	0.00936	9	
28	74	0.00482	6	
20	70	0.00283	5	
14	61	0.00151	4	
10	56			
6.3	48			
5	44			
3.35	39			
2	34			
1.18	30			
0.6	26	Particle density	(assumed)	
0.425	24	2.65	Mg/m3	
0.3	22			
0.212	20			
0.15	18			
0.063	15			

Dry Mass of sample, g 13510

Sample Proportions	% dry mass			
Cobbles	13.5			
Gravel	52.5			
Sand	18.9			
Silt	11.1			
Clay	4.0			


Grading Analysis		
D100	mm	
D60	mm	13.3
D30	mm	1.12
D10	mm	0.0148
Uniformity Coefficient		900
Curvature Coefficient		6.4

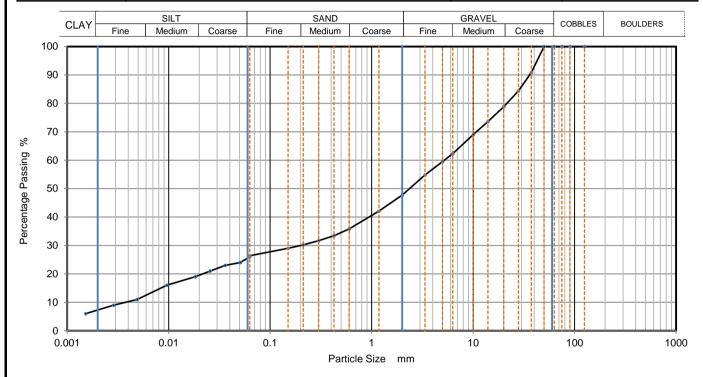
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref		21-1443E	
——GEOTECH	PARII	TICLE SIZE DISTRIBUTION -			Borehole/Pit No.		WP2_BH02
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		14	
Specimen Description	Proven clightly gravally cla	Brown slightly gravelly clayey fine to coarse SAND.			Sample Depth (m)	Тор	6.00
specimen bescription	Brown Siightly gravelly cla					Base	6.50
Specimen Reference	2 Specimen 6 m			Sample Type		В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022093061	

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	21	
90	100	0.05128	19	
75	100	0.03714	15	
63	100	0.02642	13	
50	100	0.01889	11	
37.5	100	0.00981	10	
28	100	0.00496	8	
20	100	0.00289	6	
14	99	0.00154	3	
10	99			
6.3	97			
5	96			
3.35	95			
2	93			
1.18	91			
0.6	87	Particle density	(assumed)	
0.425	85	2.65	Mg/m3	
0.3	79			
0.212	67			
0.15	49			
0.063	21			

Dry Mass of sample, g	542
	·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	7.2
Sand	71.5
Silt	17.0
Clay	4.3


Grading Analysis		
D100	mm	
D60	mm	0.186
D30	mm	0.0826
D10	mm	0.00955
Uniformity Coefficient		19
Curvature Coefficient		3.8

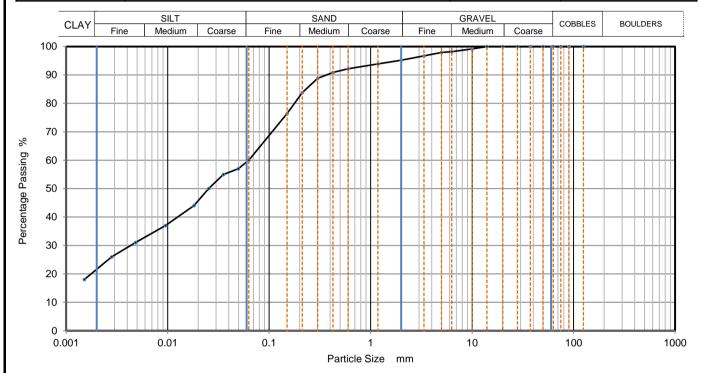
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref		21-1443E	
——GEOTECH				Borehole/Pit No.		WP2_BH02	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		22	
Specimen Description	Prown sandy gravelly silty	Brown sandy gravelly silty CLAY.			Sample	Тор	10.50
specimen bescription	Brown Sandy graveny Sitty				Depth (m)	Base	11.10
Specimen Reference	2 Specimen 10.5 m			Sample Typ	e	В	
Test Method	st Method BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022093064	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	26
90	100	0.05064	24
75	100	0.03604	23
63	100	0.02564	21
50	100	0.01835	19
37.5	91	0.00959	16
28	84	0.00491	11
20	79	0.00286	9
14	74	0.00152	6
10	69		
6.3	62		
5	60		
3.35	55		
2	48		
1.18	42		
0.6	36	Particle density	(assumed)
0.425	33	2.65	Mg/m3
0.3	32		
0.212	30		
0.15	29		
0.063	26		

Dry Mass of sample, g	4409		
Sample Proportions	% dry mass		
- 111			

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	52.3
Sand	21.3
Silt	19.0
Clay	7.4


Grading Analysis		
D100	mm	
D60	mm	5.23
D30	mm	0.201
D10	mm	0.0037
Uniformity Coefficient		1400
Curvature Coefficient		2.1

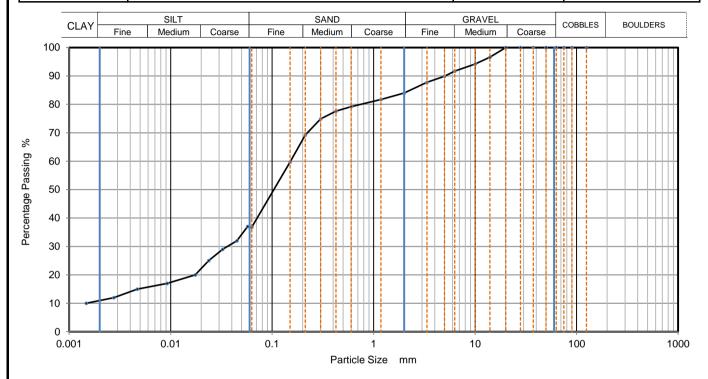
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION		Job Ref Borehole/Pit No.		21-1443E		
——GEOTECH	PARTICLE SIZE DISTRIBUTION				WP2_BH03		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		13	
Specimen Description	Dark brown sandy slightly gravelly silty CLAY.		Sam	Sample	Тор	6.00	
specimen bescription			Depth (m)	Base	7.50		
Specimen Reference	2 Specimen 6 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022093069

Sieving		Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	60			
90	100	0.04968	57			
75	100	0.03536	55			
63	100	0.02532	50			
50	100	0.01813	44			
37.5	100	0.00953	37			
28	100	0.00482	31			
20	100	0.00282	26			
14	100	0.00151	18			
10	99					
6.3	98					
5	98					
3.35	97					
2	95					
1.18	94					
0.6	92	Particle density	(assumed)			
0.425	91	2.65	Mg/m3			
0.3	89					
0.212	84	1				
0.15	76	1				
0.063	60	1				

Dry Mass of sample, g	518

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	4.8
Sand	35.3
Silt	38.1
Clay	21.8


Grading Analysis		
D100	mm	
D60	mm	
D30	mm	0.00422
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

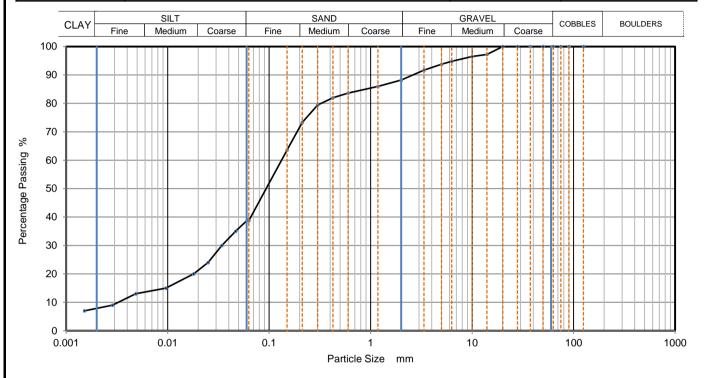
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E		
———GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP2_BH03	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		18	
Specimen Description	Description of the first transfer of the fir			Sample	Тор	13.50	
Specimen Description	Brown slightly gravelly sli	Brown slightly gravelly silty fine to coarse SAND.			Depth (m)	Base	15.00
Specimen Reference	2 Specimen 13.5 m			m	Sample Typ	ре	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022093072

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.05740	37
90	100	0.04490	32
75	100	0.03250	29
63	100	0.02367	25
50	100	0.01745	20
37.5	100	0.00925	17
28	100	0.00468	15
20	100	0.00275	12
14	97	0.00147	10
10	94		
6.3	92		
5	90		
3.35	88		
2	84		
1.18	82		
0.6	79	Particle density	(assumed)
0.425	78	2.65	Mg/m3
0.3	75		
0.212	69		
0.15	60		
0.063	37		

Dry Mass of sample, g	550
	·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	16.0
Sand	47.2
Silt	25.9
Clay	10.9


Grading Analysis		
D100	mm	
D60	mm	0.152
D30	mm	0.0371
D10	mm	0.00161
Uniformity Coefficient		94
Curvature Coefficient		5.7

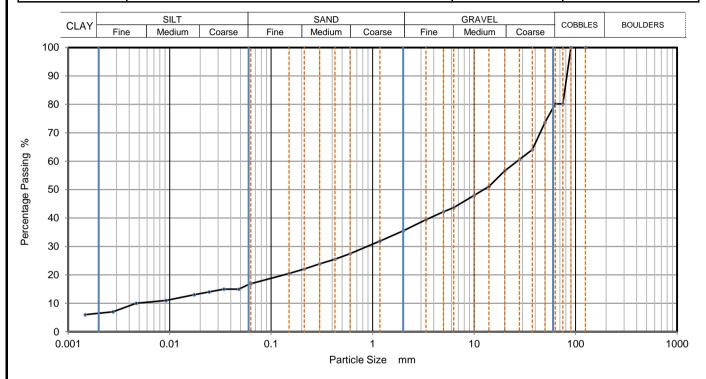
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E		
——GEOTECH	PARII	KTICLE SIZE DISTRIBUTION		Borehole/Pit No.		WP2_BH04	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		13	
Specimen Description			Samp	Sample	Тор	6.50	
specimen bescription	Brown Siightiy graveliy Cia	own slightly gravelly clayey fine to coarse SAND.		Depth (m)	Base	6.80	
Specimen Reference	2 Specimen 6.5 m			m	Sample Typ	e	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022093077

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06134	39
90	100	0.04666	35
75	100	0.03420	30
63	100	0.02500	24
50	100	0.01802	20
37.5	100	0.00959	15
28	100	0.00485	13
20	100	0.00285	9
14	97	0.00152	7
10	97		
6.3	95		
5	94		
3.35	92		
2	88		
1.18	86		
0.6	84	Particle density	(assumed)
0.425	82	2.65	Mg/m3
0.3	79		
0.212	73		
0.15	64		
0.063	39		

Dry Mass of sample, g	579

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	11.8
Sand	49.5
Silt	30.9
Clay	7.8


Grading Analysis		
D100	mm	
D60	mm	0.132
D30	mm	0.035
D10	mm	0.00327
Uniformity Coefficient		40
Curvature Coefficient		2.8

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	JSEWAY —GEOTECH PARTICLE SIZE DISTRIBUTION Borehole/Pit No.				21-1443E		
——— GEOTECH			PARTICLE SIZE DISTRIBUTION			WP2_BH04	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		31	
Specimen Description	Describe and the state of AV			Samp	Sample	Тор	13.50
Specimen Description	Brownish grey sandy gravelly silty CLAY.		Depth (m)	Base	13.80		
Specimen Reference	Specimen 13.5 m			m	Sample Typ	e	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022093079

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	17
90	100	0.04803	15
75	80	0.03420	15
63	80	0.02451	14
50	74	0.01745	13
37.5	64	0.00919	11
28	61	0.00468	10
20	57	0.00277	7
14	51	0.00147	6
10	48		
6.3	44		
5	42		
3.35	39		
2	36		
1.18	32		
0.6	28	Particle density	(assumed)
0.425	26	2.65	Mg/m3
0.3	24		
0.212	22		
0.15	21		
0.063	17		

Dry Mass of sample, g	3926
	·

Sample Proportions	% dry mass
Cobbles	19.8
Gravel	44.8
Sand	18.5
Silt	10.2
Clay	6.7

Grading Analysis		
D100	mm	
D60	mm	26.6
D30	mm	0.881
D10	mm	0.00554
Uniformity Coefficient		4800
Curvature Coefficient		5.3

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914082

Ballymoney County Antrim BT53 7QL

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.063
Thermal Resistivity	°C●Cm/W	48.48
Thermal Resistivity	°C•m/W	0.4848
Moisture Content of Test Specimen	%	14
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Comments:

None

Report checked and approved by:

Neil Hughes

Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914083 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.181
Thermal Resistivity	°C●Cm/W	45.66
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	11
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hugh	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914084 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.223
Thermal Resistivity	°C●Cm/W	44.99
Thermal Resistivity	°C•m/W	0.45
Moisture Content of Test Specimen	%	8
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hush	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914085 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.259
Thermal Resistivity	°C●Cm/W	44.27
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	5
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:	
N. Hush	
Neil Hughes	
Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914086 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.365
Thermal Resistivity	°C●Cm/W	73.27
Thermal Resistivity	°C•m/W	0.73
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hugh	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914087 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.27
Thermal Resistivity	°C●Cm/W	44.06
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	12.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hugh	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914088 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.153
Thermal Resistivity	°C●Cm/W	31.71
Thermal Resistivity	°C•m/W	0.32
Moisture Content of Test Specimen	%	9.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022
8 Drumahiskey Rd Test Report Ref: TR 914089
Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.153
Thermal Resistivity	°C●Cm/W	46.46
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	6.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Huste
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914090 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.036
Thermal Resistivity	°C●Cm/W	44.73
Thermal Resistivity	°C•m/W	0.45
Moisture Content of Test Specimen	%	3.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Huste
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914091 Ballymoney

County Antrim BT53 7QL

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

Determination of Thermal Conductivity / Resistivity by Thermal Needle **TEST REQUIREMENTS:**

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 1.5-2.45M

Date and Time of Sampling: Unknown Date of Receipt at Lab: 10/10/2022 Date of Start of Test: 29/10/2022 Sampling Location: Unknown Name of Source: Unknown Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

TD Tested By:

Material Description: Clay - Red/Brown

ENA Technical Specification 97-1: Selected Target Specification:

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.181
Thermal Resistivity	°C●Cm/W	84.7
Thermal Resistivity	°C•m/W	0.85
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914092 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.519
Thermal Resistivity	°C●Cm/W	39.7
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	10.6
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914093 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.867
Thermal Resistivity	°C●Cm/W	34.85
Thermal Resistivity	°C•m/W	0.35
Moisture Content of Test Specimen	%	7.6
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hush
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022
8 Drumahiskey Rd Test Report Ref: TR 914094
Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.819
Thermal Resistivity	°C●Cm/W	54.97
Thermal Resistivity	°C•m/W	0.55
Moisture Content of Test Specimen	%	4.6
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech 8 Drumahiskey Rd Test Report Ref: TR 914095 Ballymoney **County Antrim**

Order No: 2210-043

Date: 02 November 2022

BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

Determination of Thermal Conductivity / Resistivity by Thermal Needle **TEST REQUIREMENTS:**

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-5M

Date and Time of Sampling: Unknown Date of Receipt at Lab: 10/10/2022 31/10/2022 Date of Start of Test: Sampling Location: Unknown Name of Source: Unknown Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

TD Tested By:

Material Description: Clay - Red/Brown

ENA Technical Specification 97-1: Selected Target Specification:

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.873
Thermal Resistivity	°C●Cm/W	53.4
Thermal Resistivity	°C•m/W	0.53
Moisture Content of Test Specimen	%	1.6
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914096 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.353
Thermal Resistivity	°C●Cm/W	73.91
Thermal Resistivity	°C•m/W	0.74
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech

8 Drumahiskey Rd

8 Drumahiskey Rd

Test Report Ref: TR 914097

Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.462
Thermal Resistivity	°C●Cm/W	40.61
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	13.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hugh	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech

8 Drumahiskey Rd

Ballymoney

Date: 03 November 2022

Test Report Ref: TR 914098

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.107
Thermal Resistivity	°C●Cm/W	47.46
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	10.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Huste	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech

8 Drumahiskey Rd

Ballymoney

County Antrim

Date: 03 November 2022

Test Report Ref: TR 914099

Order No: 2210-043

County Antrim BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.258
Thermal Resistivity	°C●Cm/W	44.28
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	7.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:	
N. Hush	
Neil Hughes	
Assistant Aggregate Team Manager	

Causeway Geotech
8 Drumahiskey Rd
Ballymoney
County Antrim

Date: 03 November 2022 Test Report Ref: TR 914100

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.956
Thermal Resistivity	°C●Cm/W	51.11
Thermal Resistivity	°C•m/W	0.51
Moisture Content of Test Specimen	%	4.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Huste	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914101 Ballymoney

County Antrim Order No: 2210-043

BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.177
Thermal Resistivity	°C●Cm/W	84.94
Thermal Resistivity	°C•m/W	0.85
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:	
N. Hush	
Neil Hughes	
Assistant Aggregate Team Manager	

Causeway Geotech

8 Drumahiskey Rd

Ballymoney

Date: 02 November 2022

Test Report Ref: TR 914102

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.679
Thermal Resistivity	°C●Cm/W	59.55
Thermal Resistivity	°C•m/W	0.6
Moisture Content of Test Specimen	%	15.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hush
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914103 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.582
Thermal Resistivity	°C●Cm/W	60.85
Thermal Resistivity	°C•m/W	0.61
Moisture Content of Test Specimen	%	12.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914104 Ballymoney

County Antrim
BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.542
Thermal Resistivity	°C●Cm/W	64.83
Thermal Resistivity	°C•m/W	0.65
Moisture Content of Test Specimen	%	9.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914105 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.509
Thermal Resistivity	°C●Cm/W	66.26
Thermal Resistivity	°C•m/W	0.66
Moisture Content of Test Specimen	%	6.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech 8 Drumahiskey Rd Ballymoney County Antrim

BT53 7QL

Date: 02 November 2022 Test Report Ref: TR 914106

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.303
Thermal Resistivity	°C●Cm/W	76.72
Thermal Resistivity	°C•m/W	0.77
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hugh	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914119 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.069
Thermal Resistivity	°C●Cm/W	32.59
Thermal Resistivity	°C•m/W	0.33
Moisture Content of Test Specimen	%	26.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hugh
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914120 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.822
Thermal Resistivity	°C●Cm/W	26.16
Thermal Resistivity	°C•m/W	0.26
Moisture Content of Test Specimen	%	23.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hush
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914121 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.669
Thermal Resistivity	°C●Cm/W	37.47
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	20.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914122 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.638
Thermal Resistivity	°C●Cm/W	37.9
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	17.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914123

Ballymoney County Antrim BT53 7QL

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.315
Thermal Resistivity	°C●Cm/W	76.03
Thermal Resistivity	°C•m/W	0.76
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914134 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.584
Thermal Resistivity	°C●Cm/W	63.14
Thermal Resistivity	°C•m/W	0.63
Moisture Content of Test Specimen	%	20.3
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech

8 Drumahiskey Rd

8 Drumahiskey Rd

Test Report Ref: TR 914135

Ballymoney

County Antrim
BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.65
Thermal Resistivity	°C●Cm/W	65.39
Thermal Resistivity	°C•m/W	0.61
Moisture Content of Test Specimen	%	17.3
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hushes
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech
8 Drumahiskey Rd
Ballymoney
County Antrim

Date: 02 November 2022 Test Report Ref: TR 914136

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.39
Thermal Resistivity	°C●Cm/W	72.48
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	14.3
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914137 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.211
Thermal Resistivity	°C●Cm/W	82.57
Thermal Resistivity	°C•m/W	0.83
Moisture Content of Test Specimen	%	11.3
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914138 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.106
Thermal Resistivity	°C●Cm/W	90.44
Thermal Resistivity	°C•m/W	0.9
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914129 Ballymoney

County Antrim
BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.999
Thermal Resistivity	°C●Cm/W	50.03
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	13.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech 8 Drumahiskey Rd Ballymoney County Antrim Date: 03 November 2022 Test Report Ref: TR 914130

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.97
Thermal Resistivity	°C●Cm/W	50.76
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	10.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Huste
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914131 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.712
Thermal Resistivity	°C●Cm/W	58.42
Thermal Resistivity	°C•m/W	0.58
Moisture Content of Test Specimen	%	7.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech
8 Drumahiskey Rd
Ballymoney
County Antrim

Date: 03 November 2022 Test Report Ref: TR 914132

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.395
Thermal Resistivity	°C●Cm/W	71.67
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	4.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022
8 Drumahiskey Rd Test Report Ref: TR 914133
Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	0.915
Thermal Resistivity	°C●Cm/W	109.2
Thermal Resistivity	°C•m/W	1.09
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914139 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.644
Thermal Resistivity	°C●Cm/W	37.83
Thermal Resistivity	°C•m/W	0.38
Moisture Content of Test Specimen	%	10.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914140 Ballymoney

County Antrim Order No: 2210-043

BT53 7QL Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.474
Thermal Resistivity	°C●Cm/W	40.09
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	7.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hughes
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914141 Ballymoney

County Antrim
BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.323
Thermal Resistivity	°C●Cm/W	43.06
Thermal Resistivity	°C•m/W	0.4306
Moisture Content of Test Specimen	%	4.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914142 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.625
Thermal Resistivity	°C●Cm/W	61.5
Thermal Resistivity	°C•m/W	0.62
Moisture Content of Test Specimen	%	1.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914143 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.398
Thermal Resistivity	°C●Cm/W	71.53
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914145 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.65
Thermal Resistivity	°C●Cm/W	37.74
Thermal Resistivity	°C•m/W	0.37
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Date: 02 November 2022 Test Report Ref: TR 914146

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.033
Thermal Resistivity	°C●Cm/W	31.08
Thermal Resistivity	°C•m/W	0.31
Moisture Content of Test Specimen	%	10
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914147 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.145
Thermal Resistivity	°C●Cm/W	46.61
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	7
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914148 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.107
Thermal Resistivity	°C●Cm/W	47.47
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	4
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914149 Ballymoney

County Antrim Order No: 2210-043

BT53 7QL Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.414
Thermal Resistivity	°C●Cm/W	70.95
Thermal Resistivity	°C•m/W	0.71
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914152 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.578
Thermal Resistivity	°C●Cm/W	38.78
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	13.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914153 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.766
Thermal Resistivity	°C●Cm/W	56.64
Thermal Resistivity	°C•m/W	0.57
Moisture Content of Test Specimen	%	10.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech

8 Drumahiskey Rd

Ballymoney

Date: 02 November 2022

Test Report Ref: TR 914154

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.753
Thermal Resistivity	°C●Cm/W	57.06
Thermal Resistivity	°C•m/W	0.57
Moisture Content of Test Specimen	%	7.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Date: 02 November 2022 Test Report Ref: TR 914155

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

BT53 7QL

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH04 1.1-1.2M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.31
Thermal Resistivity	°C●Cm/W	58.93
Thermal Resistivity	°C•m/W	0.59
Moisture Content of Test Specimen	%	4.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914156 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.414
Thermal Resistivity	°C●Cm/W	70.71
Thermal Resistivity	°C•m/W	0.71
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914157 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.367
Thermal Resistivity	°C●Cm/W	42.25
Thermal Resistivity	°C•m/W	0.42
Moisture Content of Test Specimen	%	10.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914158 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.549
Thermal Resistivity	°C●Cm/W	39.23
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	7.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Huste
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914159 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.186
Thermal Resistivity	°C●Cm/W	45.74
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	4.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech

8 Drumahiskey Rd

Ballymoney

Date: 02 November 2022

Test Report Ref: TR 914160

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.828
Thermal Resistivity	°C●Cm/W	54.2
Thermal Resistivity	°C•m/W	0.54
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914161 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.43
Thermal Resistivity	°C●Cm/W	69.93
Thermal Resistivity	°C•m/W	0.7
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914162 Ballymoney **County Antrim**

Order No: 2210-043

BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

Determination of Thermal Conductivity / Resistivity by Thermal Needle **TEST REQUIREMENTS:**

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling: Unknown Date of Receipt at Lab: 10/10/2022 28/10/2022 Date of Start of Test: Sampling Location: Unknown Name of Source: Unknown Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

TD Tested By:

Material Description: Clay - Red/Brown

ENA Technical Specification 97-1: Selected Target Specification:

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.531
Thermal Resistivity	°C●Cm/W	65.3
Thermal Resistivity	°C•m/W	0.65
Moisture Content of Test Specimen	%	19.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914163 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.512
Thermal Resistivity	°C●Cm/W	66.12
Thermal Resistivity	°C•m/W	0.66
Moisture Content of Test Specimen	%	16.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914164 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.452
Thermal Resistivity	°C●Cm/W	68.88
Thermal Resistivity	°C•m/W	0.69
Moisture Content of Test Specimen	%	13.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914165 Ballymoney **County Antrim**

Order No: 2210-043

BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

Determination of Thermal Conductivity / Resistivity by Thermal Needle **TEST REQUIREMENTS:**

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling: Unknown Date of Receipt at Lab: 10/10/2022 29/10/2022 Date of Start of Test: Sampling Location: Unknown Name of Source: Unknown Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

TD Tested By:

Material Description: Clay - Red/Brown

ENA Technical Specification 97-1: Selected Target Specification:

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.36
Thermal Resistivity	°C●Cm/W	73.51
Thermal Resistivity	°C•m/W	0.74
Moisture Content of Test Specimen	%	10.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hunde
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 03 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914166 Ballymoney

County Antrim BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.127
Thermal Resistivity	°C●Cm/W	88.73
Thermal Resistivity	°C•m/W	0.89
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

eurofins

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-38401-1

Initial Date of Issue: 11-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E Dublin Array Wind Park

Quotation No.: Date Received: 07-Oct-2022

Order No.: Date Instructed: 07-Oct-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 17-Oct-2022

Date Approved: 11-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Results - Soil

Project: 21-1443E Dublin Array Wind Park

Client: Causeway Geotech Ltd	Chemtest Job No.:		22-38401	22-38401	22-38401		
Quotation No.:	(Chemte	st Sam	ple ID.:	1520819	1520820	1520821
Order No.:		Clie	nt Samp	le Ref.:	8	9	56
		Sa	ample Lo	ocation:	WP2-BH01	WP2-BH02	WP2-BH04
	Sample Type:			SOIL	SOIL	SOIL	
		Top Depth (m):		3.0	2.1	1.2	
	Date Sampled:		06-Oct-2022	06-Oct-2022	06-Oct-2022		
Determinand	Accred. SOP Units LOD						
Moisture	N	2030	%	0.020	0.64	5.4	12
pH (2.5:1)	N 2010 4.0		4.0	8.8	8.7	8.1	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	0.31

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

LABORATORY RESTRICTION REPORT

Project Reference	21-1143E	То	Sean Ross
Project Name	Dublin Array Wind Park - Stage 1 Onshore Site	Position	Project Manager
1 Tojoot Hame	Investigations	From	Stephen Watson
TR reference	21-1143E / TR01		Gropiion realesii
TRICICION	21-11-32 / 11(01	Position	Laboratory Manager

The following sample(s) and test(s) are restricted as detailed below. Could you please complete the "Required Action" column and return the completed form to the laboratory.

Hole Number	Number	Sample Depth (m)	Туре	Test Type	Reason for Restriction	Required Action
WP2_B H01	63	7.5	U	Thermal Resisitvity	Insufficient intact material in U100 (20% recovery In sample tube).	CANCEL
WP2_B H03	5	1.5	D	BRE Suite A	No sample recovery	CANCEL
WP2_B H02	2	0.25	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H02	3	1.25	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H02	44	4.5	U	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H02	28	12	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H03	28	7.8	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H03	34	8.1	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H03	37	15.5	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H04	32	19.5	В	Thermal Resisitvity	Material too coarse	CANCEL
WP2_B H04	39	13.8	В	Thermal Resisitvity	Material too coarse	CANCEL
	onic repor			a ie	Laboratory Signature Stephen Watson	Project Manager Signature Sean Ross

For electronic reporting a form of electronic signature or printed name is acceptable

Laboratory Signature	Project Manager Signature
Stephen Watson	Sean Ross
Date 05 October 2022	Date

Date: 22 November 2022 Test Report Ref: TR 914082a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.063
Thermal Resistivity	°C●Cm/W	48.48
Thermal Resistivity	°C•m/W	0.4848
Moisture Content of Test Specimen	%	14
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes

Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914083a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.181
Thermal Resistivity	°C●Cm/W	45.66
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	11
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

| Report checked and approved by:
| Revision 1 - Material description corrected. | Neil Hughes |
| Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914084a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.223
Thermal Resistivity	°C●Cm/W	44.99
Thermal Resistivity	°C•m/W	0.45
Moisture Content of Test Specimen	%	8
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914085a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.259
Thermal Resistivity	°C●Cm/W	44.27
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	5
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes

Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914086a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 0.0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.365
Thermal Resistivity	°C●Cm/W	73.27
Thermal Resistivity	°C•m/W	0.73
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914087a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.27
Thermal Resistivity	°C●Cm/W	44.06
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	12.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Comments:

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914088a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.153
Thermal Resistivity	°C●Cm/W	31.71
Thermal Resistivity	°C•m/W	0.32
Moisture Content of Test Specimen	%	9.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes

Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914089a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.153
Thermal Resistivity	°C●Cm/W	46.46
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	6.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes

Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914090a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.036
Thermal Resistivity	°C●Cm/W	44.73
Thermal Resistivity	°C•m/W	0.45
Moisture Content of Test Specimen	%	3.6
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

| Report checked and approved by:
| Revision 1 - Material description corrected. | Neil Hughes |
| Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914091a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH01 1.5-2.45M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.181
Thermal Resistivity	°C●Cm/W	84.7
Thermal Resistivity	°C•m/W	0.85
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Report checked and approved by:

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914139a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.644
Thermal Resistivity	°C●Cm/W	37.83
Thermal Resistivity	°C•m/W	0.38
Moisture Content of Test Specimen	%	10.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914140a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.474
Thermal Resistivity	°C●Cm/W	40.09
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	7.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914141a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.323
Thermal Resistivity	°C●Cm/W	43.06
Thermal Resistivity	°C•m/W	0.4306
Moisture Content of Test Specimen	%	4.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914142a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.625
Thermal Resistivity	°C●Cm/W	61.5
Thermal Resistivity	°C•m/W	0.62
Moisture Content of Test Specimen	%	1.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914143a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.398
Thermal Resistivity	°C●Cm/W	71.53
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914097a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Slightly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.462
Thermal Resistivity	°C●Cm/W	40.61
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	13.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914098a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Slightly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.107
Thermal Resistivity	°C●Cm/W	47.46
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	10.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914099a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Slightly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.258
Thermal Resistivity	°C●Cm/W	44.28
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	7.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914100a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Slightly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.956
Thermal Resistivity	°C●Cm/W	51.11
Thermal Resistivity	°C•m/W	0.51
Moisture Content of Test Specimen	%	4.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914101a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 4.5-6.0M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Slightly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.177
Thermal Resistivity	°C●Cm/W	84.94
Thermal Resistivity	°C•m/W	0.85
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914102a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Very Gravelly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.679
Thermal Resistivity	°C●Cm/W	59.55
Thermal Resistivity	°C•m/W	0.6
Moisture Content of Test Specimen	%	15.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914103a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Very Gravelly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.582
Thermal Resistivity	°C●Cm/W	60.85
Thermal Resistivity	°C•m/W	0.61
Moisture Content of Test Specimen	%	12.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914104a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Very Gravelly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.542
Thermal Resistivity	°C●Cm/W	64.83
Thermal Resistivity	°C•m/W	0.65
Moisture Content of Test Specimen	%	9.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914105a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Very Gravelly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.509
Thermal Resistivity	°C●Cm/W	66.26
Thermal Resistivity	°C•m/W	0.66
Moisture Content of Test Specimen	%	6.5
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914106a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH01 10.5-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Very Gravelly Sandy Silty Clay
Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.303
Thermal Resistivity	°C●Cm/W	76.72
Thermal Resistivity	°C•m/W	0.77
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914119a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH02 7.2-7.85M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.069
Thermal Resistivity	°C●Cm/W	32.59
Thermal Resistivity	°C•m/W	0.33
Moisture Content of Test Specimen	%	26.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914120a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH02 7.2-7.85M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.822
Thermal Resistivity	°C●Cm/W	26.16
Thermal Resistivity	°C•m/W	0.26
Moisture Content of Test Specimen	%	23.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914121a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.669
Thermal Resistivity	°C●Cm/W	37.47
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	20.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914122a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.638
Thermal Resistivity	°C●Cm/W	37.9
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	17.8
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914123a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH02 7.2-7.85M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.315
Thermal Resistivity	°C●Cm/W	76.03
Thermal Resistivity	°C•m/W	0.76
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.76
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Causeway Geotech Date: 21 December 2022 8 Drumahiskey Rd Test Report Ref: TR 928634

Ballymoney County Antrim BT53 7QL

Order No: 2210-043

Page 1 of 1

Contract: Dublin Arrray - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0.5-1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TR

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.151
Thermal Resistivity	°C●Cm/W	86.88
Thermal Resistivity	°C•m/W	0.87
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.94
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hush
	Neil Hughes
	Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914129a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Slightly Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.999
Thermal Resistivity	°C●Cm/W	50.03
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	13.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914130a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Slightly Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.97
Thermal Resistivity	°C●Cm/W	50.76
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	10.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914131a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Slightly Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.712
Thermal Resistivity	°C●Cm/W	58.42
Thermal Resistivity	°C•m/W	0.58
Moisture Content of Test Specimen	%	7.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914132a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Slightly Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.395
Thermal Resistivity	°C●Cm/W	71.67
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	4.3
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Comments:

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914133a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 0-0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Slightly Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	0.915
Thermal Resistivity	°C●Cm/W	109.2
Thermal Resistivity	°C•m/W	1.09
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914139 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.644
Thermal Resistivity	°C●Cm/W	37.83
Thermal Resistivity	°C•m/W	0.38
Moisture Content of Test Specimen	%	10.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914140 Ballymoney

County Antrim Order No: 2210-043

BT53 7QL Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.474
Thermal Resistivity	°C●Cm/W	40.09
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	7.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hughes
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914141 Ballymoney

County Antrim
BT53 7QL

Page 1 of 1

Order No: 2210-043

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.323
Thermal Resistivity	°C●Cm/W	43.06
Thermal Resistivity	°C•m/W	0.4306
Moisture Content of Test Specimen	%	4.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
N. Hush
Neil Hughes
Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914142 Ballymoney

County Antrim Order No: 2210-043
BT53 7QL

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.625
Thermal Resistivity	°C●Cm/W	61.5
Thermal Resistivity	°C•m/W	0.62
Moisture Content of Test Specimen	%	1.7
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	N. Hugh
	Neil Hughes
	Assistant Aggregate Team Manager

Causeway Geotech Date: 02 November 2022 8 Drumahiskey Rd Test Report Ref: TR 914143 Ballymoney

County Antrim BT53 7QL Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 4.5-5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Clay - Red/Brown

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.398
Thermal Resistivity	°C●Cm/W	71.53
Thermal Resistivity	°C•m/W	0.72
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	2.04
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	N. Hush	
	Neil Hughes	
	Assistant Aggregate Team Manager	

Date: 22 November 2022 Test Report Ref: TR 914145a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 10.5-12M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.65
Thermal Resistivity	°C●Cm/W	37.74
Thermal Resistivity	°C•m/W	0.37
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914146a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	3.033
Thermal Resistivity	°C●Cm/W	31.08
Thermal Resistivity	°C•m/W	0.31
Moisture Content of Test Specimen	%	10
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914147a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH03 10.5-12M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.145
Thermal Resistivity	°C●Cm/W	46.61
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	7
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

| Report checked and approved by:
| Revision 1 - Material description corrected. | Neil Hughes |
| Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914148a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.107
Thermal Resistivity	°C●Cm/W	47.47
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	4
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 22 November 2022 Test Report Ref: TR 914149a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH03 10.5-12M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.414
Thermal Resistivity	°C●Cm/W	70.95
Thermal Resistivity	°C•m/W	0.71
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.93
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914152a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.578
Thermal Resistivity	°C●Cm/W	38.78
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	13.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914153a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.766
Thermal Resistivity	°C●Cm/W	56.64
Thermal Resistivity	°C•m/W	0.57
Moisture Content of Test Specimen	%	10.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914154a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.753
Thermal Resistivity	°C●Cm/W	57.06
Thermal Resistivity	°C•m/W	0.57
Moisture Content of Test Specimen	%	7.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914155a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: **WP2_BH04 1.1-1.2M**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.31
Thermal Resistivity	°C●Cm/W	58.93
Thermal Resistivity	°C•m/W	0.59
Moisture Content of Test Specimen	%	4.2
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 21 November 2022 Test Report Ref: TR 914156a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 1.1-1.2M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.414
Thermal Resistivity	°C•Cm/W	70.71
Thermal Resistivity	°C•m/W	0.71
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.73
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914157a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.367
Thermal Resistivity	°C●Cm/W	42.25
Thermal Resistivity	°C•m/W	0.42
Moisture Content of Test Specimen	%	10.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914158a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.549
Thermal Resistivity	°C●Cm/W	39.23
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	7.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914159a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.186
Thermal Resistivity	°C●Cm/W	45.74
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	4.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 21 November 2022 Test Report Ref: TR 914160a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Grey Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.828
Thermal Resistivity	°C●Cm/W	54.2
Thermal Resistivity	°C•m/W	0.54
Moisture Content of Test Specimen	%	1.1
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Comments:

Revision 1 -Material description and moisture content of test specimen corrected.

Neil Hughes

Assistant Aggregate Team Manager

Report checked and approved by:

Date: 22 November 2022 Test Report Ref: TR 914161a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 6-6.4M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.43
Thermal Resistivity	°C●Cm/W	69.93
Thermal Resistivity	°C•m/W	0.7
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914162a Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.531
Thermal Resistivity	°C●Cm/W	65.3
Thermal Resistivity	°C•m/W	0.65
Moisture Content of Test Specimen	%	19.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 22 November 2022 Test Report Ref: TR 914163a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.512
Thermal Resistivity	°C●Cm/W	66.12
Thermal Resistivity	°C•m/W	0.66
Moisture Content of Test Specimen	%	16.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 21 November 2022 Test Report Ref: TR 914164a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.452
Thermal Resistivity	°C●Cm/W	68.88
Thermal Resistivity	°C•m/W	0.69
Moisture Content of Test Specimen	%	13.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Revision 1 -Material description corrected.

Revision 1 -Material description corrected.

Neil Hughes
Assistant Aggregate Team Manager

Date: 21 November 2022 Test Report Ref: TR 914165a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.36
Thermal Resistivity	°C●Cm/W	73.51
Thermal Resistivity	°C•m/W	0.74
Moisture Content of Test Specimen	%	10.2
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Date: 21 November 2022 Test Report Ref: TR 914166a

Revision 1

Order No: 2210-043

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S105990

Client Ref. No: WP2_BH04 9.74-10.7

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Method of Sampling:

Unknown

Unknown

Unknown

Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: TD

Material Description: Brown Gravelly Silty Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.127
Thermal Resistivity	°C●Cm/W	88.73
Thermal Resistivity	°C•m/W	0.89
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.64
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

HEAD OFFICE Causeway Geotech Ltd

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

4 November 2022

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations			
Project No.:	21-1443E		
Client:	Dublin Array Offshore Windfarm		
Engineer:	Gavin & Doherty Geosolutions (GDG)		

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 11/10/2022 and 04/11/2022.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Report Reference: Schedule 2

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	16
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	8
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	8
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	8

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	BRE Test - Suite C		4

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

		Sar	nple		Busiiii / iii ay	Dens		w	Passing	LL	PL	PI	Particle	
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry	%	425μm %	%	%	%	density Mg/m3	Casagrande Classification
WP1_BH01	13	3.00		D	Grey sandy slightly gravelly silty CLAY.	Ivig/II		8.4	,,,	70	70		Wg/IIIO	
WP1_BH01	14	4.50		D	Grey sandy slightly gravelly silty CLAY.			8.1	68	24 -1pt	15	9		CL
WP1_BH01	20	9.00		D	Brownish grey sandy gravelly silty CLAY.			10.0	40	32 -1pt	21	11		CL
WP1_BH01	22	10.00		D	Brownish grey slightly gravelly silty fine to coarse SAND.			12.0						
WP1_BH02	11	3.00		D	Brownish grey slightly gravelly silty fine to coarse SAND.			5.3	63	27 -1pt	16	11		CL
WP1_BH02	14	6.00		D	Brownish grey sandy slightly gravelly silty CLAY.			6.7	49	28 -1pt	18	10		CL
WP1_BH02	19	9.00		D	Brownish grey sandy slightly gravelly silty CLAY.			10.0						
WP1_BH02	23	12.00		D	Brownish grey sandy slightly gravelly silty CLAY.			7.6						
WP1_BH03	7	4.50		D	Brownish grey sandy slightly gravelly silty CLAY.			8.3	75	27 -1pt	16	11		CL
WP1_BH03	6	6.00		D	Brownish grey sandy slightly gravelly silty CLAY.			6.7						
WP1_BH03	10	7.50		D	Brownish grey sandy slightly gravelly silty CLAY.			9.2	72	32 -1pt	18	14		CL
WP1_BH03	14	10.50		D	Brownish grey sandy slightly gravelly silty CLAY.			6.0						

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

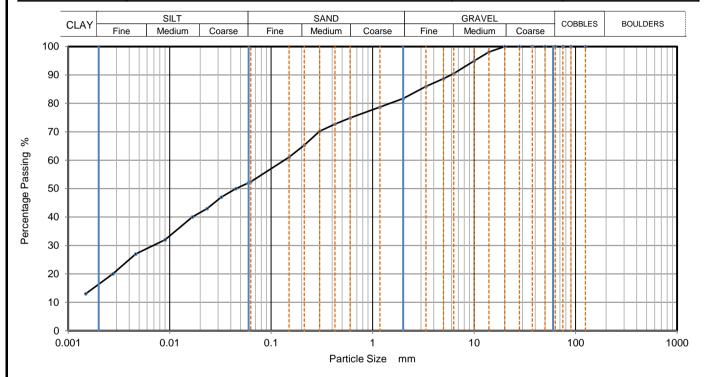
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 11/04/2022 00:00 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations


21-12	21-1443E Dublin Array Wind Park - Stage 1 Onshore Site investigations													
Hole No.			nple	1	Specimen Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande
TIOIC 140.	Ref	Тор	Base	Туре	Opecanien Description	Mg/m		%	%	%	%	%	Mg/m3	Classification
WP1_BH04	12	3.00		D	Brownish grey sandy slightly gravelly silty CLAY.			14.0	46	28 -1pt	17	11		CL
WP1_BH04	14	6.00		D	Brownish grey sandy slightly gravelly silty CLAY.			6.0						
WP1_BH04	21	9.00		D	Brownish grey sandy slightly gravelly silty CLAY.			12.0						
WP1_BH04	25	13.50		D	Brownish grey slightly gravelly slightly silty fine to coarse SAND.			14.0	47	30 -1pt	17	13		CL

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

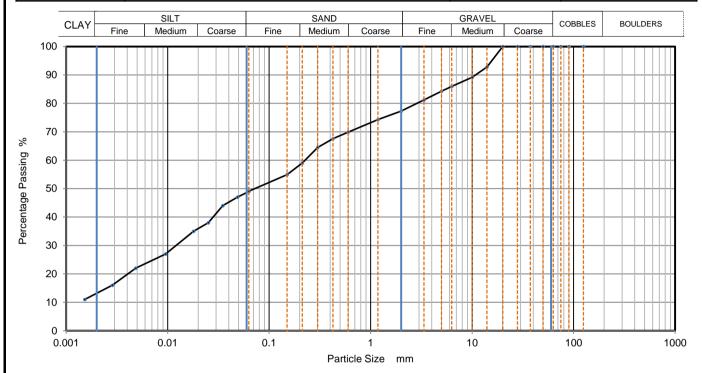
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 11/04/2022 00:00 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

CAUSEWAY	DARTICLE CIZE DISTRIBUTION				Job Ref		21-1443E	
———GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION				it No.	WP1_BH01	
Site Name	Dublin Array Wind Par	k - Stage 1 Onsho	re Site Investigations		Sample No.		12	
Specimen Description	Grey sandy slightly gravel					Тор	3.00	
specimen bescription	Grey Saridy Slightly graver	ly silty CLAT.			Depth (m)	Base	4.50	
Specimen Reference	2 Specimen 3 m				Sample Type		В	
Test Method	BS1377:Part 2:1990, claus	ses 9.2 and 9.5			KeyLAB ID		Caus202210119	

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.05942	52			
90	100	0.04491	50			
75	100	0.03226	47			
63	100	0.02333	43			
50	100	0.01674	40			
37.5	100	0.00901	32			
28	100	0.00462	27			
20	100	0.00275	20			
14	98	0.00149	13			
10	95					
6.3	91					
5	89					
3.35	86					
2	82					
1.18	79					
0.6	75	Particle density	(assumed)			
0.425	73	2.65	Mg/m3			
0.3	70					
0.212	65					
0.15	61					
0.063	52					

Dry Mass of sample, g	541
	•

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	18.3
Sand	29.4
Silt	35.6
Clay	16.7


Grading Analysis		
D100	mm	
D60	mm	0.134
D30	mm	0.00682
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

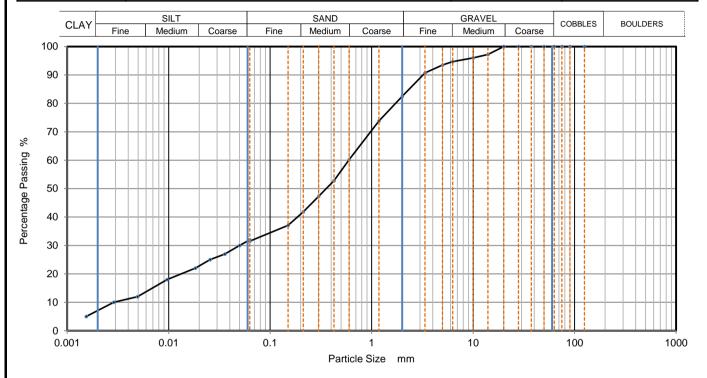
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICI E CIZE DICTRIRI ITIONI			Job Ref		21-1443E	
——GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION -			Borehole/Pit No.		WP1_BH01
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		17	
Specimen Description				Sample	Тор	6.00	
Specimen Description	Brownish grey sandy sligh	Brownish grey sandy slightly gravelly silty CLAY.			Depth (m)	Base	7.50
Specimen Reference	2 Specimen 6 m				Sample Type		В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022101112

Siev	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	49		
90	100	0.04870	47		
75	100	0.03490	44		
63	100	0.02517	38		
50	100	0.01802	35		
37.5	100	0.00953	27		
28	100	0.00485	22		
20	100	0.00285	16		
14	93	0.00152	11		
10	89				
6.3	86				
5	84				
3.35	81				
2	77				
1.18	74				
0.6	70	Particle density	(assumed)		
0.425	68	2.65	Mg/m3		
0.3	65				
0.212	59				
0.15	55				
0.063	49				

Dry Mass of sample, g	542
-----------------------	-----

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	22.7		
Sand	28.2		
Silt	35.8		
Clay	13.3		


Grading Analysis		
D100	mm	
D60	mm	0.225
D30	mm	0.0121
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

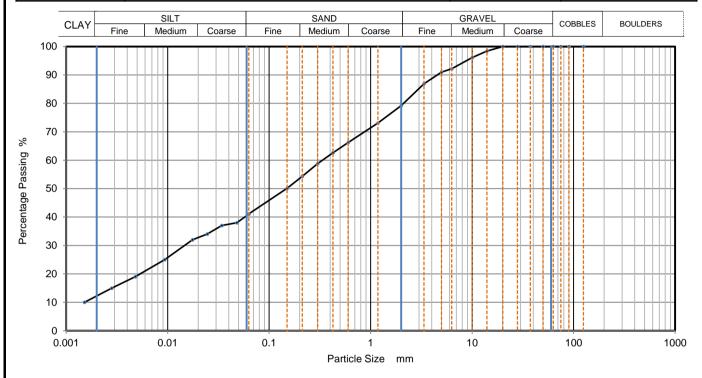
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION			Job Ref		21-1443E	
——GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP1_BH02
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		10	
Specimen Description	Provinish grov sandy sligh	Brownish grey sandy slightly gravelly silty CLAY.			Sample Depth (m)	Тор	3.00
specimen bescription	Brownish grey sandy sligh					Base	4.50
Specimen Reference	2 Specimen 3 m				Sample Type		В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022101116	

Siev	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	32		
90	100	0.05001	30		
75	100	0.03582	27		
63	100	0.02564	25		
50	100	0.01835	22		
37.5	100	0.00965	18		
28	100	0.00493	12		
20	100	0.00288	10		
14	97	0.00154	5		
10	96				
6.3	95				
5	94				
3.35	91				
2	83				
1.18	74				
0.6	60	Particle density	(assumed)		
0.425	53	2.65	Mg/m3		
0.3	47				
0.212	42				
0.15	37				
0.063	32				

Dry Mass of sample, g	556
-----------------------	-----

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	17.5		
Sand	51.0		
Silt	24.3		
Clay	7.2		


Grading Analysis		
D100	mm	
D60	mm	0.596
D30	mm	0.0492
D10	mm	0.00312
Uniformity Coefficient		190
Curvature Coefficient		1.3

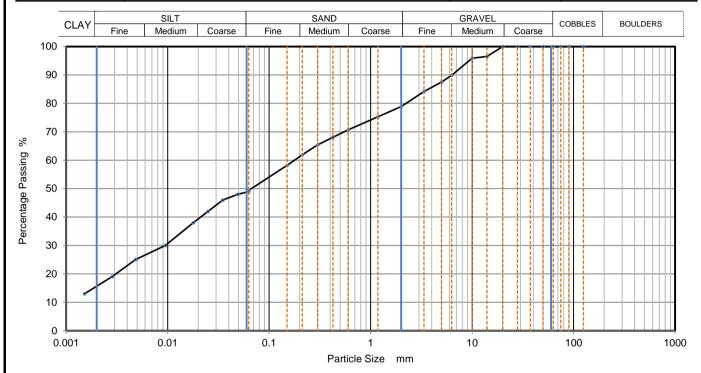
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE CIZE DISTRIBUTION			Job Ref		21-1443E	
——GEOTECH	PARII	ARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP1_BH02
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		17	
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.			Sample	Тор	8.30	
specimen bescription	Brownish grey sandy sligh	itty graveny siity CLA	AT.		Depth (m)	Base	9.00
Specimen Reference	2 Specimen 8.3 m				Sample Type		В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022101119

Siev	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	41	
90	100	0.04803	38	
75	100	0.03420	37	
63	100	0.02452	34	
50	100	0.01757	32	
37.5	100	0.00936	25	
28	100	0.00480	19	
20	100	0.00282	15	
14	98	0.00152	10	
10	96			
6.3	92			
5	91			
3.35	87			
2	79			
1.18	73			
0.6	66	Particle density	(assumed)	
0.425	63	2.65	Mg/m3	
0.3	59			
0.212	54			
0.15	50			
0.063	41			

Dry Mass of sample, g	522
	· · · · · · · · · · · · · · · · · · ·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	20.8
Sand	38.1
Silt	29.1
Clay	12.0


Grading Analysis		
D100	mm	
D60	mm	0.334
D30	mm	0.0153
D10	mm	0.00159
Uniformity Coefficient		210
Curvature Coefficient		0.44

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E	
——GEOTECH	PARII	CLE SIZE DIST	IKIBUTION	Borehole/F	it No.	WP1_BH03
Site Name	Dublin Array Wind Par	k - Stage 1 Onsho	re Site Investigations	Sample No		5
Specimen Description	otion Brownish grey sandy slightly gravelly silty CLAY.		4.50			
Specimen Description	Brownish grey sandy sligh	itiy graveliy siity CL	11.	Depth (m)	Base	6.00
Specimen Reference	2	Specimen Depth	4.5 m	Sample Typ	oe	В
Test Method	BS1377:Part 2:1990, clau	ses 9.2 and 9.5		KeyLAB ID		Caus2022101124

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	49	
90	100	0.04903	48	
75	100	0.03490	46	
63	100	0.02501	42	
50	100	0.01791	38	
37.5	100	0.00948	30	
28	100	0.00482	25	
20	100	0.00283	19	
14	97	0.00152	13	
10	96			
6.3	90			
5	88			
3.35	84			
2	79			
1.18	75			
0.6	71	Particle density	(assumed)	
0.425	68	2.65	Mg/m3	
0.3	65			
0.212	62			
0.15	58			
0.063	49			

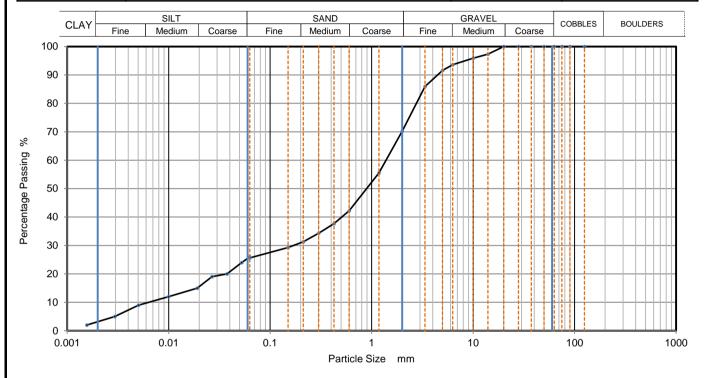
Sample Proportions	% dry mass
Cobbles	0.0
Gravel	21.1

531

Dry Mass of sample, g

Sample Proportions	70 UT y 111033
Cobbles	0.0
Gravel	21.1
Sand	29.5
Silt	33.6
Clay	15.8

Grading Analysis		
D100	mm	
D60	mm	0.178
D30	mm	0.00904
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		


Remarks

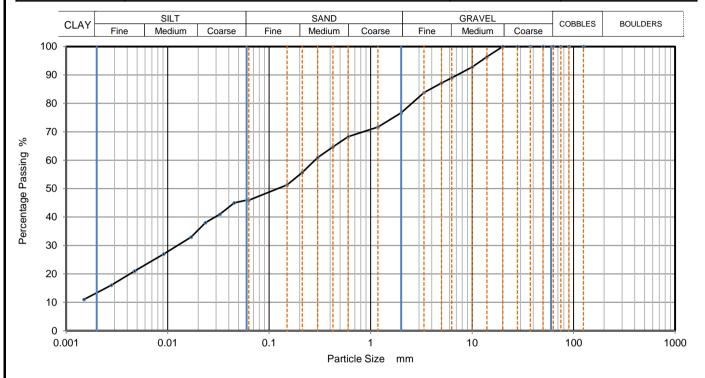
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E		
——GEOTECH	Borehole/Pit No.		JOINGUIUN		it No.	WP1_BH03	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations		Sample No.		19		
Specimen Description	scription Brownish grey slightly gravelly silty fine to coarse SAND.		12.00				
specimen bescription	Brownish grey slightly gra	avelly slity lifle to co	arse sand.		Depth (m)	Base	13.50
Specimen Reference	2	Specimen Depth	12	m	Sample Typ	e	В
Test Method	BS1377:Part 2:1990, clau	ses 9.2 and 9.5			KeyLAB ID		Caus2022101128

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	26	
90	100	0.05253	24	
75	100	0.03758	20	
63	100	0.02672	19	
50	100	0.01911	15	
37.5	100	0.00998	12	
28	100	0.00504	9	
20	100	0.00294	5	
14	97	0.00156	2	
10	96			
6.3	94			
5	92			
3.35	86			
2	70			
1.18	56			
0.6	42	Particle density	(assumed)	
0.425	38	2.65	Mg/m3	
0.3	34			
0.212	31			
0.15	29			
0.063	26			

Dry Mass of sample, g 510

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	29.8
Sand	44.6
Silt	22.6
Clay	3.0


Grading Analysis		
D100	mm	
D60	mm	1.39
D30	mm	0.17
D10	mm	0.00676
Uniformity Coefficient		210
Curvature Coefficient		3.1

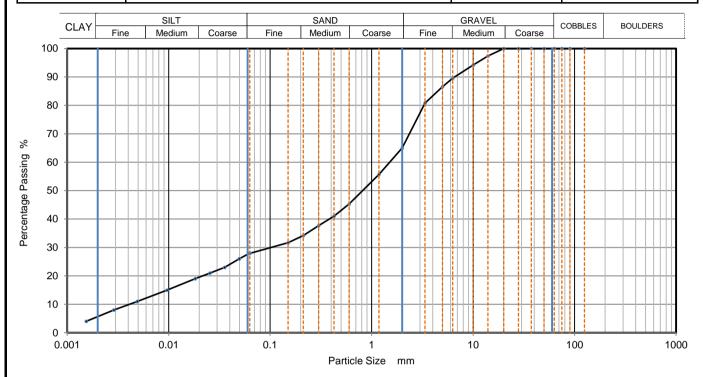
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E		
——GEOTECH	PARII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.		WP1_BH04	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		17	
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.		Sample	Тор	6.00		
specimen bescription			Depth (m)	Base	7.50		
Specimen Reference	2 Specimen 6 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022101132

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06039	46
90	100	0.04526	45
75	100	0.03276	41
63	100	0.02351	38
50	100	0.01710	33
37.5	100	0.00913	27
28	100	0.00471	21
20	100	0.00278	16
14	96	0.00150	11
10	93		
6.3	89		
5	87		
3.35	84		
2	77		
1.18	72		
0.6	68	Particle density	(assumed)
0.425	65	2.65	Mg/m3
0.3	61		
0.212	56		
0.15	51		
0.063	46		

Dry Mass of sample, g	506

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	23.3
Sand	30.8
Silt	32.4
Clay	13.5


Grading Analysis		
D100	mm	
D60	mm	0.282
D30	mm	0.012
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION			JSEWAY DARTICLE SIZE DISTRIBUTION		21-1443E	
——— GEOTECH	GEOTECH Borehole/Pit No		PARTICLE SIZE DISTRIBUTION			it No.	WP1_BH04
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No		24	
Specimen Description	Brownish grey slightly gravelly silty fine to coarse SAND.		Sample	Тор	12.70		
Specimen Description			Depth (m)	Base	15.00		
Specimen Reference	2 Specimen 12.7 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022101134

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	28
90	100	0.04969	26
75	100	0.03559	23
63	100	0.02549	21
50	100	0.01824	19
37.5	100	0.00965	15
28	100	0.00491	11
20	100	0.00288	8
14	97	0.00154	4
10	94		
6.3	90		
5	87		
3.35	81		
2	65		
1.18	56		
0.6	45	Particle density	(assumed)
0.425	41	2.65	Mg/m3
0.3	38		
0.212	34		
0.15	32		
0.063	28		

Dry Mass of sample, g	575
	·

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	35.0
Sand	37.1
Silt	22.0
Clay	5.9

Grading Analysis		
D100	mm	
D60	mm	1.5
D30	mm	0.101
D10	mm	0.00408
Uniformity Coefficient		370
Curvature Coefficient		1.7

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

LAB 05R - Version 6

12

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Chemtest

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-40381-1

Initial Date of Issue: 27-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s):

Alistair McQuat Carin Cornwall Ciaran Doherty Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Megan Walsh Neil Haggan Paul Dunlop Rachel White Sean Ross

Stephen Francy

S

Project 21-1443E Dublin Array

Quotation No.: Date Received: 21-Oct-2022

Order No.: Date Instructed: 21-Oct-2022

No. of Samples: 4

Turnaround (Wkdays): 7 Results Due: 31-Oct-2022

Date Approved: 27-Oct-2022

Approved By:

Details:

Stuart Henderson, Technical Manager

eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road

Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 21-1443E Dublin Array

Client: Causeway Geotech Ltd	Chemtest Job No.:		22-40381	22-40381	22-40381	22-40381		
Quotation No.:	Chemtest Sample ID.:		1529886	1529887	1529888	1529889		
Order No.:	Client Sample Ref.:		le Ref.:	11	7	3	11	
	Sample Location:		WP1_BH01	WP1_BH02	WP1_BH03	WP1_BH04		
	Sample Type:		SOIL	SOIL	SOIL	SOIL		
	Top [Top Dep	oth (m):	1.50	1.50	1.50	1.50
	Date Sampled:		20-Oct-2022	20-Oct-2022	20-Oct-2022	20-Oct-2022		
Determinand	Accred. SOP Units LOD							
Moisture	N 2030 % 0.020		8.9	1.4	9.7	14		
pH (2.5:1)	N 2010 4.0		8.3	9.6	8.1	8.4		
Sulphate (2:1 Water Soluble) as SO4	U 2120 g/l 0.010		0.014	0.013	0.010	0.028		

Test Methods

SOP	Title	Parameters included	Method summary				
2010	pH Value of Soils	рН	pH Meter				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

HEAD OFFICE Causeway Geotech Ltd

NI: +44 (0)28 276 66640

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

22 November 2022

Project Name:	Dublin Array Wind Park - Stage 1 Onshore Site Investigations						
Project No.:	21-1443E						
Client:	Dublin Array Offshore Windfarm						
Engineer:	Gavin & Doherty Geosolutions (GDG)						

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 08/11/2022 and 22/11/2022.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Report Reference: Schedule 3 - INTERIM

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	27
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	14
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	16
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	14

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	BRE Test - Suite C		8
SOIL – Subcontracted to Celtest Company (UKAS 0494)	Determination of Thermal Conductivity by Thermal Needle Probe Procedure (5 Point method at various Moisture Content).	ASTM - D5334-14	5
SOIL – Subcontracted to Celtest Company (UKAS 0494)	Determination of Thermal Conductivity by Thermal Needle Probe Procedure (1 Point method at optimum moisture content).	ASTM - D5334-14	17

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

		Sar	nple		.,	Dens	itv	W	Passing	LL	PL	ΡI	Particle	
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry	%	425µm	%	%	%	density Mg/m3	Casagrande Classification
WP1_TP01	5	1.00		В	Brownish grey sandy gravelly silty CLAY.	Wg/II		7.8	,,	70	70			
WP1_TP01	6	1.50		В	Brownish grey sandy gravelly silty CLAY.			5.8	61	23 -1pt	14	9		CL
WP1_TP02	7	2.50		В	Brownish grey sandy gravelly silty CLAY.			10	61	24 -1pt	16	8		CL
WP1_TP02	8	3.50		В	Brownish grey sandy gravelly silty CLAY.			7.9						
WP1_TP03	8	3.40		В	Brownish grey sandy gravelly silty CLAY.			8.9	45	25 -1pt	16	9		CL
WP1_TP04	5	1.00		В	Brownish grey gravelly clayey fine to coarse SAND.			10						
WP1_TP04	8	3.30		В	Brownish grey sandy gravelly silty CLAY.			17	73	27 -1pt	16	11		CL
WP1_TP05	8	3.00		В	Brownish grey sandy gravelly silty CLAY.			10	42	29 -1pt	20	9		CL
WP1_TP06	6	1.50		В	Brownish grey slightly gravelly clayey fine to coarse SAND.			17						
WP1_TP06	8	3.00		В	Brownish grey sandy gravelly silty CLAY.			15	74	31 -1pt	19	12		CL
WP1_TP07	7	2.60		В	Brownish grey sandy gravelly silty CLAY.			8.6	37	32 -1pt	19	13		CL
WP1_TP08	8	3.50		В	Brownish grey sandy gravelly silty CLAY.			8.4	45	27 -1pt	17	10		CL

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 22/11/2022 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

21 17					Dabiii 7 tiray						9			
Hole No.		Sar	mple		Specimen Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande
11010 110.	Ref	Тор	Base	Туре	Specimen Becompilen	Mg/m		%	%	%	%	%	Mg/m3	Classification
WP1_TP09	7	2.40		В	Brownish grey sandy gravelly silty CLAY.			7.9						
WP1_TP10	8	3.00		В	Brownish grey slightly gravelly clayey fine to coarse SAND.			20						
WP1_TP10	9	3.40		В	Brownish grey sandy gravelly silty CLAY.			13	56	24 -1pt	16	8		CL
WP1_TP11	3	1.00		В	Brownish grey sandy gravelly silty CLAY.			11						
WP1_TP11	8	3.40		В	Brownish grey sandy gravelly silty CLAY.			8.5	61	30 -1pt	18	12		CL
WP1_TP12	7	3.20		В	Brownish grey gravelly slightly clayey fine to coarse SAND.			10						
WP1_TP12	8	3.80		В	Brownish grey sandy gravelly silty CLAY.			11	56	27 -1pt	15	12		CL
WP1_TP13	1	0.50		В	Brownish grey sandy gravelly silty CLAY.			15						
WP1_TP13	5	1.50		В	Brownish grey sandy gravelly clayey SILT.			10	44	44 -1pt	28	16		МІ
WP2_TP01	7	2.50		В	Brownish grey slightly gravelly silty fine to coarse SAND.			11						
WP2_TP01	8	3.30		В	Brownish grey slightly gravelly silty fine to coarse SAND.			4.8						
WP2_TP03	7	2.30		В	Brownish grey sandy slightly gravelly silty CLAY.			15						

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

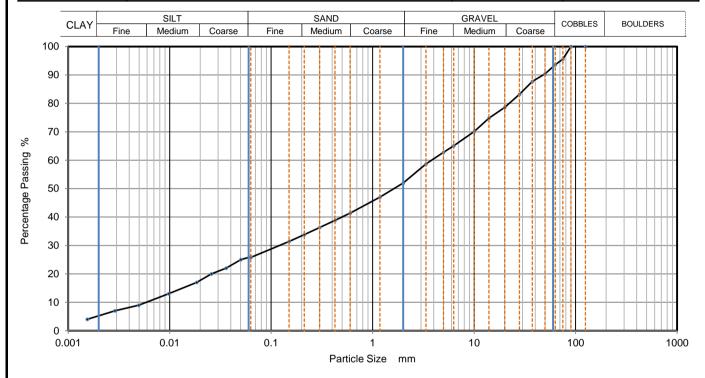
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 22/11/2022 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

Summary of Classification Test Results

Project No. Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations


21 17					Dubiii 7 (iray				0	o o	9			
Hole No.			nple		Specimen Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande
	Ref	Тор	Base	Туре		Mg/m		%	%	%	%	%	Mg/m3	Classification
WP2_TP03	8	3.20		В	Brownish grey sandy slightly gravelly silty CLAY.			15	84	35 -1pt	17	18		CL/CI
WP2_TP04	7	2.30		В	Brownish grey sandy slightly gravelly silty CLAY.			16	86	34 -1pt	17	17		CL
WP2_TP04	8	3.20		В	Brownish grey sandy slightly gravelly silty CLAY.			15						

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

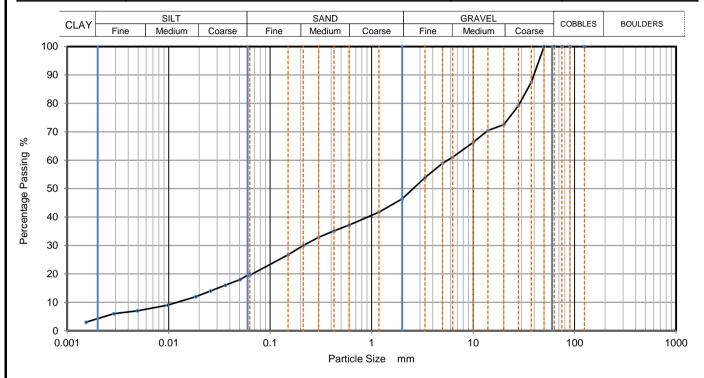
Key Date Printed Approved By Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer 22/11/2022 wd - water displacement cas - Casagrande method gj - gas jar 10122 wi - immersion in water 1pt - single point test Stephen Watson

CAUSEWAY	PARTICLE SIZE DISTRIBUTION				Job Ref		21-1443E
——GEOTECH					Borehole/P	it No.	WP1_TP01
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations				Sample No.		5
Specimen Description	Provincial and a second by a site of AV				Sample	Тор	1.00
Specimen Description	Brownish grey sandy grav	Brownish grey sandy gravelly silty CLAY.			Depth (m)	Base	
Specimen Reference	6 Specimen 1 m			m	Sample Type		В
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5					Caus202211081

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	26
90	100	0.05032	25
75	96	0.03604	22
63	94	0.02580	20
50	90	0.01846	17
37.5	88	0.00976	13
28	83	0.00496	9
20	79	0.00289	7
14	75	0.00154	4
10	70		
6.3	65		
5	63		
3.35	59		
2	52		
1.18	47		
0.6	41	Particle density	(assumed)
0.425	39	2.65	Mg/m3
0.3	36		
0.212	34		
0.15	31		
0.063	26		

Dry Mass of sample, g 17716	Dry Mass of sample, g	17716
-----------------------------	-----------------------	-------

Sample Proportions	% dry mass
Cobbles	6.4
Gravel	41.6
Sand	26.2
Silt	20.7
Clay	5.1


Grading Analysis		
D100	mm	
D60	mm	3.8
D30	mm	0.121
D10	mm	0.00607
Uniformity Coefficient		630
Curvature Coefficient		0.64

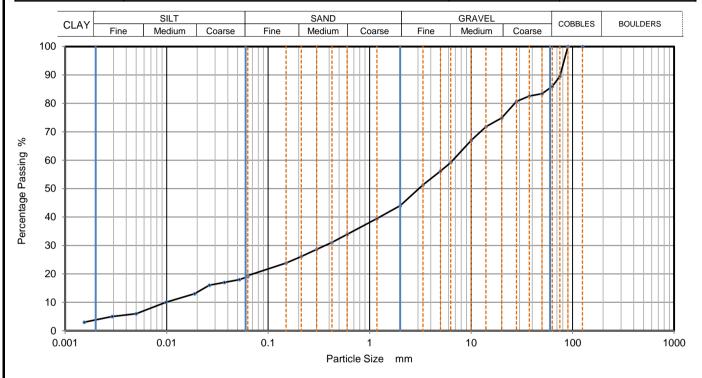
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION				Job Ref		21-1443E
——GEOTECH					Borehole/P	it No.	WP1_TP02
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations				Sample No.		8
Specimen Description	Decrusion group and group live idea CLAV				Sample	Тор	3.50
Specimen Description	Brownish grey sandy grav	Brownish grey sandy gravelly silty CLAY.			Depth (m)	Base	
Specimen Reference	6 Specimen 3.5 m			m	Sample Type		В
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5					Caus202211087

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	20
90	100	0.05048	18
75	100	0.03615	16
63	100	0.02587	14
50	100	0.01851	12
37.5	88	0.00973	9
28	79	0.00495	7
20	73	0.00287	6
14	71	0.00154	3
10	66		
6.3	61		
5	59		
3.35	54		
2	46		
1.18	42		
0.6	37	Particle density	(assumed)
0.425	35	2.65	Mg/m3
0.3	33		
0.212	30		
0.15	27		
0.063	20		

Dry Mass of sample, g	4260

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	53.6
Sand	26.9
Silt	15.5
Clay	4.0


Grading Analysis		
D100	mm	
D60	mm	5.62
D30	mm	0.212
D10	mm	0.0115
Uniformity Coefficient		490
Curvature Coefficient		0.69

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
——GEOTECH				Borehole/Pit No.		WP1_TP03	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		8	
Specimen Description				Sample	Тор	3.40	
Specimen Description	Specimen Description Brownish grey sandy gravelly silty CLAY.		Depth (m)	Base			
Specimen Reference	8 Specimen 3.4 m			Sample Typ	e	В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110812

Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06300	19			
90	100	0.05206	18			
75	90	0.03703	17			
63	86	0.02634	16			
50	83	0.01884	13			
37.5	83	0.00984	10			
28	81	0.00500	6			
20	75	0.00290	5			
14	72	0.00154	3			
10	67					
6.3	59					
5	56					
3.35	51					
2	44					
1.18	40					
0.6	34	Particle density	(assumed)			
0.425	31	2.65	Mg/m3			
0.3	29					
0.212	26					
0.15	24					
0.063	19					

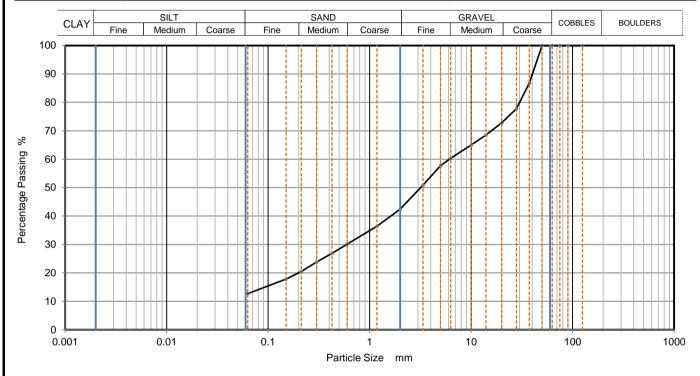
ample Proportions	% dry mass
Cobbles	14.0
Gravel	42.0

10581


Sample Proportions	% dry mass			
Cobbles	14.0			
Gravel	42.0			
Sand	24.6			
Silt	15.8			
Clay	3.6			

Dry Mass of sample, g

Grading Analysis		
D100	mm	
D60	mm	6.6
D30	mm	0.364
D10	mm	0.00926
Uniformity Coefficient		710
Curvature Coefficient		2.2


Remarks

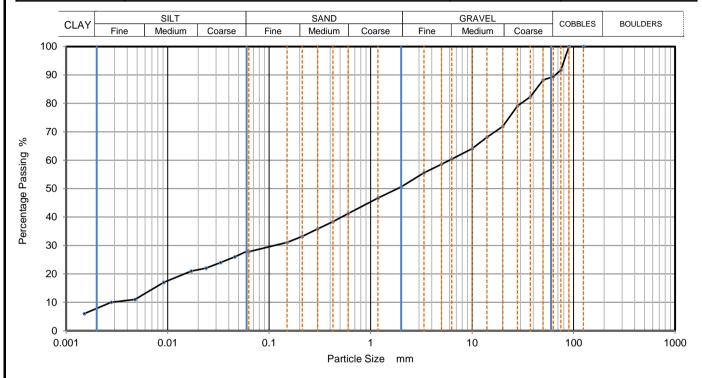
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	SEWAY DARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP1_TP04		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		5	
Carrier Description Brownish and appropriate to the state of the state			Sample	Тор	1.00		
Specimen Description	escription Brownish grey gravelly clayey fine to coarse SAND.			Depth (m)	Base		
Specimen Reference	6	Specimen Depth	1	Sample Type		В	
Test Method	BS1377:Part 2:1990, claus	S1377:Part 2:1990, clause 9.2			KeyLAB ID		Caus2022110814

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	87					
28	78					
20	73					
14	69					
10	65					
6.3	60					
5	58					
3.35	51					
2	42					
1.18	36					
0.6	30					
0.425	27					
0.3	24		_			
0.212	21][
0.15	18]				
0.063	13					

Dry Mass of sample, g	6787		

Sample Proportions	% dry mass				
Cobbles	0.0				
Gravel	57.6				
Sand	29.8				
Fines <0.063mm	13.0				


Grading Analysis		
D100	mm	
D60	mm	6.12
D30	mm	0.593
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

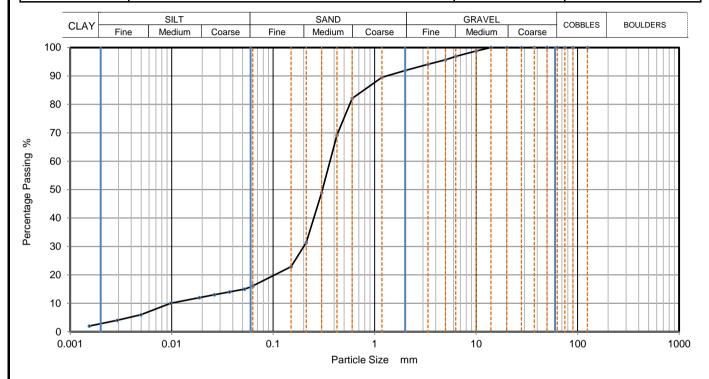
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
———GEOTECH				Borehole/Pit No.		WP1_TP05	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		8	
Specimen Description				Sample	Тор	3.00	
specimen bescription	Specimen Description Brownish grey sandy gravelly silty CLAY.		Depth (m)	Base			
Specimen Reference	8 Specimen 3 m			m	Sample Typ	e	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110822

Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.06086	28			
90	100	0.04596	26			
75	92	0.03324	24			
63	89	0.02384	22			
50	88	0.01710	21			
37.5	82	0.00913	17			
28	79	0.00477	11			
20	72	0.00278	10			
14	68	0.00151	6			
10	64					
6.3	60					
5	59					
3.35	56					
2	51					
1.18	47					
0.6	41	Particle density	(assumed)			
0.425	38	2.65	Mg/m3			
0.3	36					
0.212	33					
0.15	31					
0.063	28					

Dry Mass of sample, g	17012

Sample Proportions	% dry mass
Cobbles	10.6
Gravel	38.8
Sand	22.8
Silt	20.4
Clay	7.4


Grading Analysis		
D100	mm	
D60	mm	5.96
D30	mm	0.112
D10	mm	0.00326
Uniformity Coefficient		1800
Curvature Coefficient		0.64

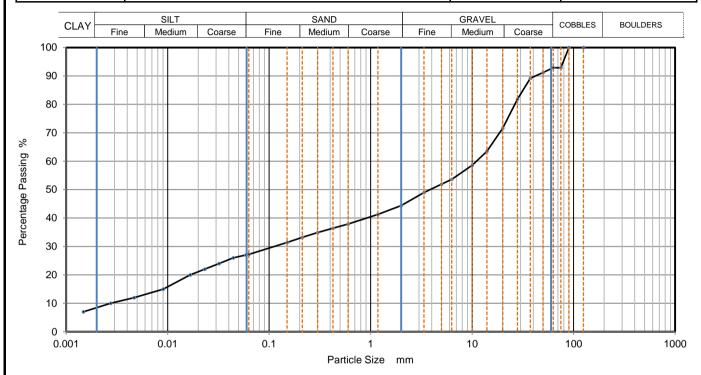
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref		21-1443E		
——— GEOTECH			Borehole/Pit No.		WP1_TP06		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations		Sample No		6		
Specimen Description	Brownish grey slightly gravelly clayey fine to coarse SAND.		Sample	Тор	1.50		
Specimen Description			Depth (m)	Base			
Specimen Reference	6 Specimen 1.5 m			m	Sample Typ	ре	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110825

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	16
90	100	0.05206	15
75	100	0.03703	14
63	100	0.02634	13
50	100	0.01873	12
37.5	100	0.00978	10
28	100	0.00497	6
20	100	0.00290	4
14	100	0.00154	2
10	99		
6.3	97		
5	96		
3.35	94		
2	92		
1.18	90		
0.6	82	Particle density	(assumed)
0.425	69	2.65	Mg/m3
0.3	49		
0.212	31		
0.15	23		
0.063	16		

Dry Mass of sample, g	508
-----------------------	-----

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	8.1
Sand	75.8
Silt	13.1
Clay	3.0


Grading Analysis		
D100	mm	
D60	mm	0.363
D30	mm	0.201
D10	mm	0.0108
Uniformity Coefficient		33
Curvature Coefficient		10

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref Borehole/Pit No.		21-1443E		
——— GEOTECH					WP1_TP07		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No		7	
Specimen Description	Brownish grey sandy gravelly silty CLAY.		Sample	Тор	2.60		
Specimen Description			Depth (m)	Base			
Specimen Reference	Specimen 2.6 m			m	Sample Typ	е	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110831

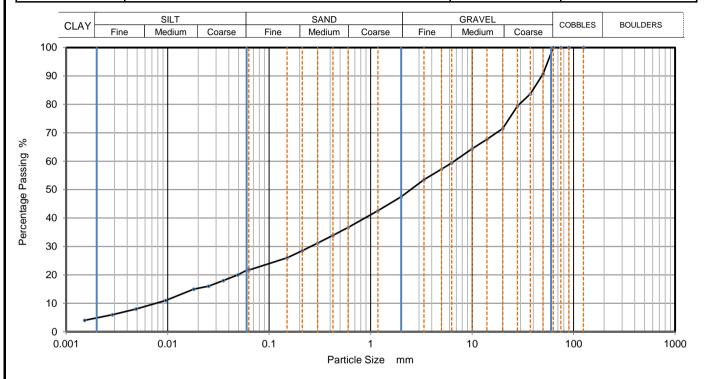
Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.05866	27
90	100	0.04435	26
75	93	0.03212	24
63	93	0.02324	22
50	91	0.01668	20
37.5	89	0.00904	15
28	82	0.00467	12
20	72	0.00274	10
14	64	0.00148	7
10	59		
6.3	54		
5	52		
3.35	49		
2	44		
1.18	41		
0.6	38	Particle density	(assumed)
0.425	36	2.65	Mg/m3
0.3	35		
0.212	33		
0.15	31		
0.063	27		

Dry Mass of sample, g	13455

Sample Proportions	% dry mass
Cobbles	7.1
Gravel	48.5
Sand	17.2
Silt	18.9
Clay	8.3

Grading Analysis		
D100	mm	
D60	mm	11
D30	mm	0.113
D10	mm	0.00291
Uniformity Coefficient		3800
Curvature Coefficient		0.4

Preparation and testing in accordance with BS1377-2 :1990 unless noted below



LAB 05R - Version 6

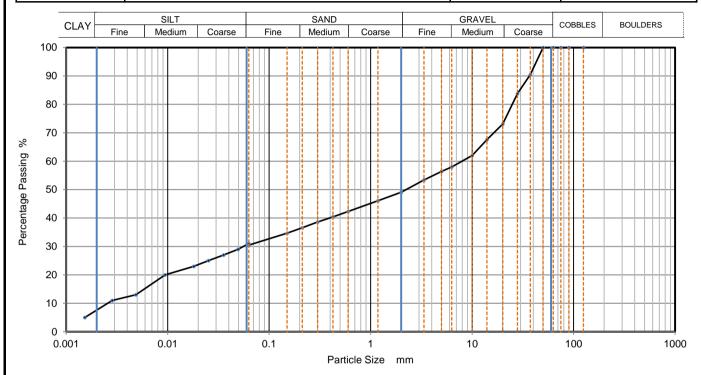
10122

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
——— GEOTECH				Borehole/Pit No.		WP1_TP08	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		8	
Specimen Description	Brownish grey sandy gravelly silty CLAY.			Sample Depth (m)	Тор	3.50	
Specimen Description					Base		
Specimen Reference	Specimen 3.5 m			Sample Type		В	
Test Method	BS1377:Part 2:1990, cla	SS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022110836

Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	22		
90	100	0.04918	20		
75	100	0.03524	18		
63	100	0.02524	16		
50	91	0.01807	15		
37.5	84	0.00956	11		
28	79	0.00489	8		
20	72	0.00286	6		
14	68	0.00152	4		
10	64				
6.3	59				
5	57				
3.35	54				
2	48				
1.18	43				
0.6	37	Particle density	(assumed)		
0.425	34	2.65	Mg/m3		
0.3	31				
0.212	29				
0.15	26				
0.063	22				

Dry Mass of sample, g	12047
	•

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	52.5
Sand	25.8
Silt	16.6
Clay	5.1


Grading Analysis		
D100	mm	
D60	mm	6.65
D30	mm	0.258
D10	mm	0.00746
Uniformity Coefficient		890
Curvature Coefficient		1.3

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
——— GEOTECH				Borehole/Pit No.		WP1_TP09	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		7	
Specimen Description	Description of the control of the CLAV				Sample Depth (m)	Тор	2.40
Specimen Description	Brownish grey sandy gra	Brownish grey sandy gravelly silty CLAY.				Base	
Specimen Reference	6 Specimen 2.4 m			Sample Typ	е	В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022110840	

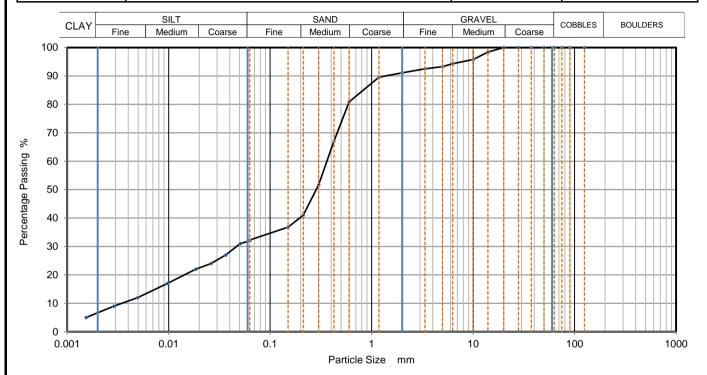
Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	31		
90	100	0.04951	29		
75	100	0.03547	27		
63	100	0.02524	25		
50	100	0.01807	23		
37.5	91	0.00945	20		
28	84	0.00486	13		
20	73	0.00284	11		
14	68	0.00153	5		
10	62				
6.3	58				
5	56				
3.35	53				
2	49				
1.18	46				
0.6	42	Particle density	(assumed)		
0.425	40	2.65	Mg/m3		
0.3	39				
0.212	37				
0.15	35				
0.063	31				

Dry Mass of sample, g 3141	Dry Mass of sample, g	3141
----------------------------	-----------------------	------

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	50.9
Sand	18.6
Silt	22.9
Clay	7.6

Grading Analysis		
D100	mm	
D60	mm	7.91
D30	mm	0.0572
D10	mm	0.00264
Uniformity Coefficient		3000
Curvature Coefficient		0.16

Preparation and testing in accordance with BS1377-2 :1990 unless noted below



LAB 05R - Version 6

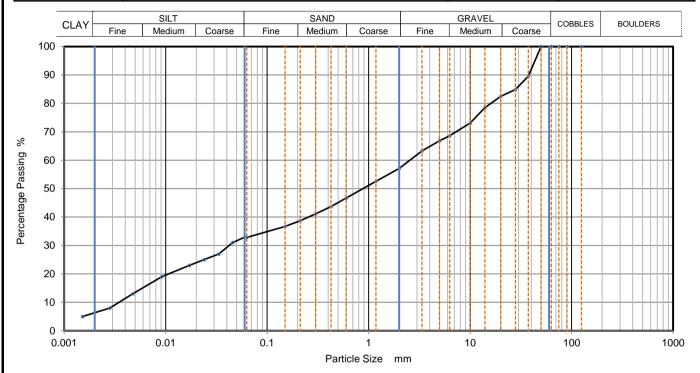
10122

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
——— GEOTECH				Borehole/Pit No.		WP1_TP10	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		8	
Specimen Description	Brownish and distall and the second s			Sample	Тор	3.00	
Specimen Description	Brownish grey slightly gre	Brownish grey slightly gravelly clayey fine to coarse SAND.			Depth (m)	Base	
Specimen Reference	6 Specimen 3 m			m	Sample Typ	е	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110845

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06300	32	
90	100	0.05080	31	
75	100	0.03637	27	
63	100	0.02603	24	
50	100	0.01851	22	
37.5	100	0.00973	17	
28	100	0.00495	12	
20	100	0.00289	9	
14	98	0.00154	5	
10	96			
6.3	94			
5	93			
3.35	93			
2	91			
1.18	90			
0.6	81	Particle density	(assumed)	
0.425	67	2.65	Mg/m3	
0.3	52			
0.212	41			
0.15	37			
0.063	32			

Dry Mass of sample, g	506
-----------------------	-----

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	8.9
Sand	58.8
Silt	25.8
Clay	6.5


Grading Analysis		
D100	mm	
D60	mm	0.362
D30	mm	0.0479
D10	mm	0.00366
Uniformity Coefficient		99
Curvature Coefficient		1.7

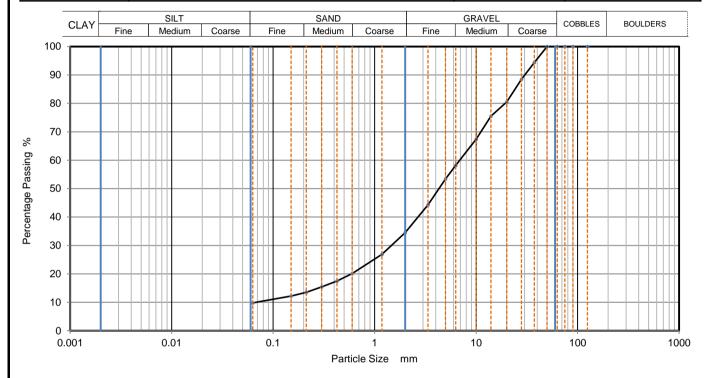
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTI	CLE SIZE DIST	DIDLITION		Job Ref		21-1443E
———GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/P	it No.	WP1_TP11	
Site Name	Dublin Array Wind Par	k - Stage 1 Onsho	re Site Investigations		Sample No.		3
Specimen Description	Brownish grey sandy gravelly silty CLAY.			Sample	Тор	1.00	
Specimen Description	STOWNISH grey Sandy gravelly Silty CLAY.			Depth (m)	Base		
Specimen Reference	6	Specimen Depth	1	m	Sample Type		В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID		Caus2022110848	

Siev	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06062	33	
90	100	0.04578	31	
75	100	0.03336	27	
63	100	0.02393	25	
50	100	0.01716	23	
37.5	90	0.00916	19	
28	85	0.00475	13	
20	83	0.00282	8	
14	79	0.00152	5	
10	73			
6.3	69			
5	67			
3.35	63			
2	57			
1.18	53			
0.6	47	Particle density	(assumed)	
0.425	44	2.65	Mg/m3	
0.3	41			
0.212	39			
0.15	37			
0.063	33			

Dry Mass of sample, g 3335

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	42.9
Sand	24.3
Silt	26.5
Clay	6.3


Grading Analysis		
D100	mm	
D60	mm	2.55
D30	mm	0.0423
D10	mm	0.00336
Uniformity Coefficient		760
Curvature Coefficient		0.21

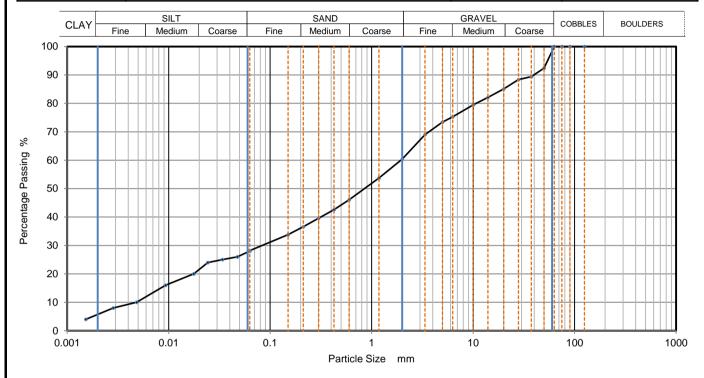
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTI	CLE SIZE DIST	DIBLITION		Job Ref		21-1443E
——GEOTECH	PARII	CLE SIZE DIST	KIBUTION		Borehole/P	it No.	WP1_TP12
Site Name	Dublin Array Wind Par	k - Stage 1 Onsho	re Site Investigations		Sample No.		7
Specimen Description	Brownish grey gravelly slightly clayey fine to coarse SAND.			Sample	Тор	3.20	
Specimen bescription	brownish grey graveny slightly clayey line to coarse SAND.			Depth (m)	Base		
Specimen Reference	6	Specimen Depth	3.2	m	Sample Type		В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID		Caus2022110855	

Siev	/ing	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	94		
28	89		
20	81		
14	76		
10	67		
6.3	58		
5	53		
3.35	44		
2	35		
1.18	27		
0.6	20		
0.425	18		
0.3	15		
0.212	14		
0.15	12		
0.063	10		

Dry Mass of sample, g	6738	
-----------------------	------	--

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	65.5
Sand	24.7
Fines <0.063mm	10.0


Grading Analysis		
D100	mm	
D60	mm	6.91
D30	mm	1.46
D10	mm	0.067
Uniformity Coefficient		100
Curvature Coefficient		4.6

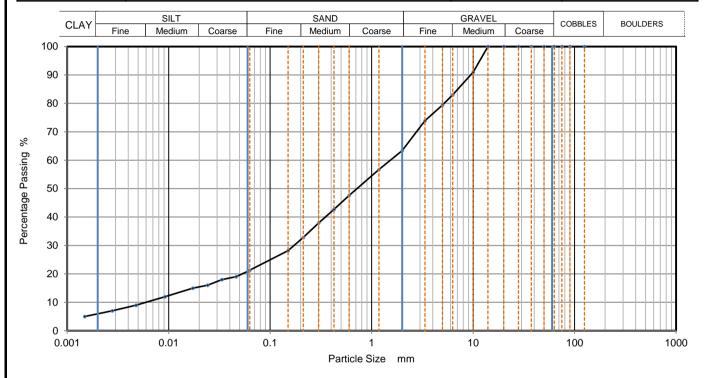
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref Borehole/Pit No.		21-1443E	
——GEOTECH						WP1_TP13	
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		1	
Specimen Description	Brownish grey sandy gravelly silty CLAY.			Sample	Тор	0.50	
Specimen Description				Depth (m)	Base		
Specimen Reference	6 Specimen 0.5 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110857

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06298	28	
90	100	0.04751	26	
75	100	0.03384	25	
63	100	0.02426	24	
50	92	0.01762	20	
37.5	89	0.00933	16	
28	88	0.00484	10	
20	85	0.00284	8	
14	82	0.00153	4	
10	80			
6.3	75			
5	73			
3.35	69			
2	60			
1.18	54			
0.6	46	Particle density	(assumed)	
0.425	43	2.65	Mg/m3	
0.3	40			
0.212	37			
0.15	34			
0.063	28			

Dry Mass of sample, g	2881

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	39.6
Sand	32.2
Silt	22.8
Clay	5.4


Grading Analysis		
D100	mm	
D60	mm	1.94
D30	mm	0.0838
D10	mm	0.00454
Uniformity Coefficient		430
Curvature Coefficient		0.8

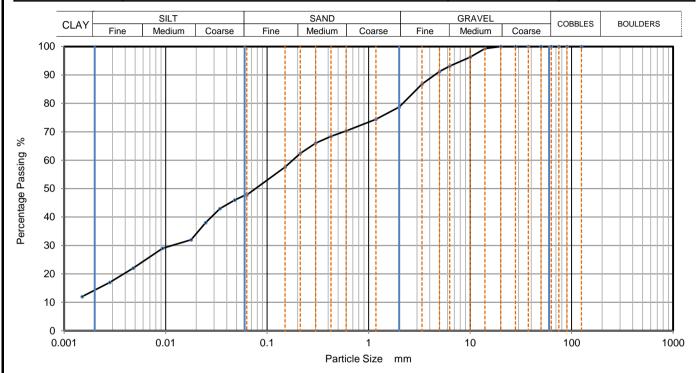
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	DARTICLE SIZE DISTRIBUTION		Job Ref Borehole/Pit No.		21-1443E		
———GEOTECH	PARTICLE SIZE DISTRIBUTION -				WP2_TP01		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		7	
Specimen Description	Brownish grey slightly gravelly silty fine to coarse SAND.			Sample	Тор	2.50	
Specimen Description				Depth (m)	Base		
Specimen Reference	6 Specimen 2.5 m			Sample Typ	e	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110863

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06086	21	
90	100	0.04631	19	
75	100	0.03348	18	
63	100	0.02418	16	
50	100	0.01733	15	
37.5	100	0.00925	12	
28	100	0.00477	9	
20	100	0.00278	7	
14	100	0.00149	5	
10	91			
6.3	83			
5	79			
3.35	74			
2	63			
1.18	57			
0.6	48	Particle density	(assumed)	
0.425	43	2.65	Mg/m3	
0.3	38			
0.212	33			
0.15	28			
0.063	21			

Dry Mass of sample, g 503

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	36.6
Sand	42.2
Silt	14.9
Clay	6.3


Grading Analysis		
D100	mm	
D60	mm	1.53
D30	mm	0.172
D10	mm	0.00658
Uniformity Coefficient		230
Curvature Coefficient		2.9

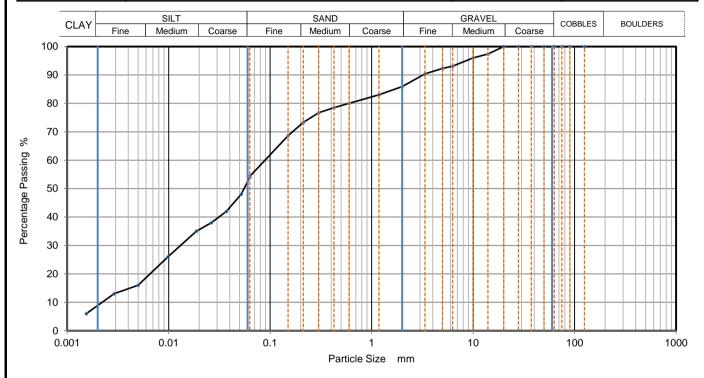
Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref Borehole/Pit No.		21-1443E	
——GEOTECH						WP2_TP03	
Site Name	Oublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		7	
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.			Sample Depth (m)	Тор	2.30	
Specimen Description					Base		
Specimen Reference	6 Specimen 2.3 m			m	Sample Typ	e	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110868

Siev	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	48		
90	100	0.04785	46		
75	100	0.03431	43		
63	100	0.02476	38		
50	100	0.01785	32		
37.5	100	0.00933	29		
28	100	0.00478	22		
20	100	0.00281	17		
14	99	0.00150	12		
10	96				
6.3	93				
5	91				
3.35	87				
2	79				
1.18	74				
0.6	70	Particle density	(assumed)		
0.425	68	2.65	Mg/m3		
0.3	66				
0.212	62				
0.15	58				
0.063	48				

Dry Mass Of Sample, g	303
Dry Mass of sample, g	503

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	21.3
Sand	30.9
Silt	33.5
Clay	14.3


Grading Analysis		
D100	mm	
D60	mm	0.178
D30	mm	0.0112
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref Borehole/Pit No.		21-1443E	
——GEOTECH						WP2_TP04	
Site Name	Oublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		8	
Specimen Description	Brownish grey sandy slightly gravelly silty CLAY.			Sample	Sample	Тор	3.20
Specimen Description				Depth (m)	Base		
Specimen Reference	6 Specimen 3.2 m			m	Sample Typ	e	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022110874

Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.06300	54		
90	100	0.05175	48		
75	100	0.03703	42		
63	100	0.02634	38		
50	100	0.01873	35		
37.5	100	0.00984	26		
28	100	0.00500	16		
20	100	0.00290	13		
14	97	0.00154	6		
10	96				
6.3	93				
5	92				
3.35	90				
2	86				
1.18	83				
0.6	80	Particle density	(assumed)		
0.425	79	2.65	Mg/m3		
0.3	77				
0.212	73				
0.15	69				
0.063	54				

Dry Mass of sample, g 512	Dry Mass of sample, g	512
---------------------------	-----------------------	-----

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	14.1
Sand	31.6
Silt	45.3
Clay	9.0

Grading Analysis		
D100	mm	
D60	mm	0.089
D30	mm	0.0133
D10	mm	0.00221
Uniformity Coefficient		40
Curvature Coefficient		0.9

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP02 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP02 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.263
Thermal Resistivity	°C●Cm/W	44.2
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	15
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek/
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP02 1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP02 1M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.39
Thermal Resistivity	°C●Cm/W	41.84
Thermal Resistivity	°C•m/W	0.42
Moisture Content of Test Specimen	%	17
Dry Density of Test Specimen	Mg/m ³	1.75
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	ek/	
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP02 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP02 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.289
Thermal Resistivity	°C●Cm/W	43.68
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	16
Dry Density of Test Specimen	Mg/m ³	1.78
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP03 1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP03 1M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.81
Thermal Resistivity	°C●Cm/W	55.25
Thermal Resistivity	°C•m/W	0.55
Moisture Content of Test Specimen	%	15
Dry Density of Test Specimen	Mg/m ³	1.84
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP03 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP03 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.944
Thermal Resistivity	°C●Cm/W	51.43
Thermal Resistivity	°C•m/W	0.51
Moisture Content of Test Specimen	%	15
Dry Density of Test Specimen	Mg/m ³	1.83
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP07 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP07 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.431
Thermal Resistivity	°C●Cm/W	41.14
Thermal Resistivity	°C•m/W	0.41
Moisture Content of Test Specimen	%	16
Dry Density of Test Specimen	Mg/m ³	1.8
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:	
Chantelle Kopec-Williams	
Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP07 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP07 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.823
Thermal Resistivity	°C●Cm/W	54.86
Thermal Resistivity	°C•m/W	0.55
Moisture Content of Test Specimen	%	17
Dry Density of Test Specimen	Mg/m ³	1.8
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	ek	
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP08 1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP08 1M

Name of Source: Site Won Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.91
Thermal Resistivity	°C●Cm/W	52.34
Thermal Resistivity	°C•m/W	0.52
Moisture Content of Test Specimen	%	14
Dry Density of Test Specimen	Mg/m ³	1.78
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP08 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP08 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.939
Thermal Resistivity	°C●Cm/W	51.57
Thermal Resistivity	°C•m/W	0.52
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.85
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek/
	Chantelle Kopec-Williams
	Job Coordinator

Causeway Geotech

8 Drumahiskey Rd

Date: 20 December 2022
Test Report Ref: TR 921890

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP09 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP09 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.272
Thermal Resistivity	°C●Cm/W	44.02
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	15
Dry Density of Test Specimen	Mg/m ³	1.88
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP09 1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP09 1M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.96
Thermal Resistivity	°C●Cm/W	51.03
Thermal Resistivity	°C•m/W	0.51
Moisture Content of Test Specimen	%	14
Dry Density of Test Specimen	Mg/m ³	1.83
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Causeway Geotech

8 Drumahiskey Rd

Date: 20 December 2022
Test Report Ref: TR 921892

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP09 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP09 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.152
Thermal Resistivity	°C●Cm/W	46.46
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.9
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP10 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP10 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.062
Thermal Resistivity	°C●Cm/W	48.5
Thermal Resistivity	°C•m/W	0.49
Moisture Content of Test Specimen	%	18
Dry Density of Test Specimen	Mg/m ³	1.77
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP1 TP10 1M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP1 TP10 1M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.019
Thermal Resistivity	°C●Cm/W	49.53
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	16
Dry Density of Test Specimen	Mg/m ³	1.82
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:
\sim \vee
Chantelle Kopec-Williams
Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 0.5** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 0.5** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.837
Thermal Resistivity	°C●Cm/W	54.43
Thermal Resistivity	°C•m/W	0.54
Moisture Content of Test Specimen	%	20
Dry Density of Test Specimen	Mg/m ³	1.68
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 0.5** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 0.5** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.183
Thermal Resistivity	°C●Cm/W	45.81
Thermal Resistivity	°C•m/W	0.46
Moisture Content of Test Specimen	%	17
Dry Density of Test Specimen	Mg/m ³	1.68
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 0.5** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 0.5** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.133
Thermal Resistivity	°C●Cm/W	46.88
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	14
Dry Density of Test Specimen	Mg/m ³	1.68
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 0.5** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 0.5** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.075
Thermal Resistivity	°C●Cm/W	48.19
Thermal Resistivity	°C•m/W	0.48
Moisture Content of Test Specimen	%	11
Dry Density of Test Specimen	Mg/m ³	1.68
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 0.5** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 0.5** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	0.92
Thermal Resistivity	°C●Cm/W	108.7
Thermal Resistivity	°C•m/W	1.09
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.68
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Method of Sampling:

Certificate of sampling received: No

Laboratory Ref. No:

Client Ref. No:

WP2 TP1 1M

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Site Won

Sampled By: Client (Test results apply to sample as received)

Unknown

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.617
Thermal Resistivity	°C●Cm/W	61.83
Thermal Resistivity	°C•m/W	0.62
Moisture Content of Test Specimen	%	17.3
Dry Density of Test Specimen	Mg/m ³	1.65
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.753
Thermal Resistivity	°C●Cm/W	57.05
Thermal Resistivity	°C•m/W	0.57
Moisture Content of Test Specimen	%	14.3
Dry Density of Test Specimen	Mg/m ³	1.65
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.884
Thermal Resistivity	°C●Cm/W	53.09
Thermal Resistivity	°C•m/W	0.53
Moisture Content of Test Specimen	%	11.3
Dry Density of Test Specimen	Mg/m ³	1.65
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: Sampling Location: **WP2 TP1 1M** Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.686
Thermal Resistivity	°C●Cm/W	59.31
Thermal Resistivity	°C•m/W	0.59
Moisture Content of Test Specimen	%	8.3
Dry Density of Test Specimen	Mg/m ³	1.65
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP1 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP1 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	0.6
Thermal Resistivity	°C●Cm/W	166.7
Thermal Resistivity	°C•m/W	1.67
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.65
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek/
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP2 TP3 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.994
Thermal Resistivity	°C•Cm/W	50.16
Thermal Resistivity	°C•m/W	0.5
Moisture Content of Test Specimen	%	19
Dry Density of Test Specimen	Mg/m ³	1.71
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Conten

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Causeway Geotech

8 Drumahiskey Rd

Date: 20 December 2022
Test Report Ref: TR 921940

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Method of Sampling:

Certificate of sampling received: No

Laboratory Ref. No:

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Site Won

Sampled By: Client (Test results apply to sample as received)

Unknown

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.435
Thermal Resistivity	°C●Cm/W	41.06
Thermal Resistivity	°C•m/W	0.41
Moisture Content of Test Specimen	%	13.3
Dry Density of Test Specimen	Mg/m ³	1.96
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek
	Chantelle Kopec-Williams
	Job Coordinator

Causeway Geotech

8 Drumahiskey Rd

Date: 20 December 2022
Test Report Ref: TR 921941

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP3 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: Sampling Location: **WP2 TP3 1M** Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.741
Thermal Resistivity	°C●Cm/W	36.48
Thermal Resistivity	°C•m/W	0.36
Moisture Content of Test Specimen	%	10.3
Dry Density of Test Specimen	Mg/m ³	1.96
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP3 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP3 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.482
Thermal Resistivity	°C●Cm/W	40.3
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	7.3
Dry Density of Test Specimen	Mg/m ³	1.96
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP3 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP3 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.14
Thermal Resistivity	°C●Cm/W	46.72
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	4.3
Dry Density of Test Specimen	Mg/m ³	1.96
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek/
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738 Client Ref. No: **WP2 TP3 1M** Date and Time of Sampling: Unknown Date of Receipt at Lab: 14/11/2022 14/12/2022 Date of Start of Test: **WP2 TP3 1M** Sampling Location: Name of Source: **Site Won** Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.237
Thermal Resistivity	°C●Cm/W	80.81
Thermal Resistivity	°C•m/W	0.81
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.96
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP3 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.221
Thermal Resistivity	°C●Cm/W	45.03
Thermal Resistivity	°C•m/W	0.45
Moisture Content of Test Specimen	%	12.2
Dry Density of Test Specimen	Mg/m ³	1.89
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None	ek/	
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP3 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.448
Thermal Resistivity	°C●Cm/W	40.85
Thermal Resistivity	°C•m/W	0.41
Moisture Content of Test Specimen	%	9.2
Dry Density of Test Specimen	Mg/m ³	1.89
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP3 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.293
Thermal Resistivity	°C●Cm/W	43.61
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	6.2
Dry Density of Test Specimen	Mg/m ³	1.89
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP3 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.113
Thermal Resistivity	°C●Cm/W	47.33
Thermal Resistivity	°C•m/W	0.47
Moisture Content of Test Specimen	%	3.2
Dry Density of Test Specimen	Mg/m ³	1.89
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:	
None		
	Chantelle Kopec-Williams	
	Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP3 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP3 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	0.966
Thermal Resistivity	°C●Cm/W	103.5
Thermal Resistivity	°C•m/W	1.04
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.89
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Report checked and approved by:	
\sim \sim	
Chantelle Kopec-Williams	
Job Coordinator	

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 0.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

15/12/2022

WP2 TP4 0.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.04
Thermal Resistivity	°C●Cm/W	49.01
Thermal Resistivity	°C•m/W	0.49
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.92
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Conten

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Method of Sampling:

Certificate of sampling received: No

Laboratory Ref. No:

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Name of Source:

Site Won

Sampled By: Client (Test results apply to sample as received)

Unknown

Tested By: VY

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.279
Thermal Resistivity	°C●Cm/W	43.88
Thermal Resistivity	°C•m/W	0.44
Moisture Content of Test Specimen	%	13
Dry Density of Test Specimen	Mg/m ³	1.94
Method of Compaction		2.5Kg Rammer
Compacted at		Optimum Moisture Content

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP4 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.514
Thermal Resistivity	°C●Cm/W	39.78
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	12.2
Dry Density of Test Specimen	Mg/m ³	1.99
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek/
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

13/12/2022

WP2 TP4 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.587
Thermal Resistivity	°C●Cm/W	38.65
Thermal Resistivity	°C•m/W	0.39
Moisture Content of Test Specimen	%	9.2
Dry Density of Test Specimen	Mg/m ³	1.99
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

13/12/2022

WP2 TP4 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.521
Thermal Resistivity	°C●Cm/W	39.66
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	6.2
Dry Density of Test Specimen	Mg/m ³	1.99
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP4 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	2.569
Thermal Resistivity	°C●Cm/W	38.73
Thermal Resistivity	°C•m/W	0.4
Moisture Content of Test Specimen	%	3.2
Dry Density of Test Specimen	Mg/m ³	1.99
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	ek
	Chantelle Kopec-Williams
	Job Coordinator

Ballymoney County Antrim BT53 7QL

Page 1 of 1

Contract: Dublin Array - 21-1443E

LABORATORY TEST REPORT

TEST REQUIREMENTS: Determination of Thermal Conductivity / Resistivity by Thermal Needle

Probe tested in accordance with ASTM D5334-14

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S106738

Client Ref. No: WP2 TP4 1.5M

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

14/11/2022

14/12/2022

WP2 TP4 1.5M

Name of Source: Site Won
Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

Tested By: SR

Material Description: Red/Brown Clay

Target Specification: ENA Technical Specification 97-1: Selected

Sand Backfill: ≤2.70°C•m/W

RESULTS:

Test	Units	Result
Thermal Conductivity	W/m●K	1.326
Thermal Resistivity	°C●Cm/W	75.44
Thermal Resistivity	°C•m/W	0.75
Moisture Content of Test Specimen	%	0
Dry Density of Test Specimen	Mg/m ³	1.99
Method of Compaction		2.5Kg Rammer
Compacted at		Natural moisture

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

Comments:	Report checked and approved by:
None	
	Chantelle Kopec-Williams
	Job Coordinator

HEAD OFFICE Causeway Geotech Ltd

8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

> Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 **ROI**: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

7 February 2023

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Project Name:	Dublin Array Wind Park - Stage 1 Onshore Site Investigations
Project No.:	21-1443E
Client:	Dublin Array Offshore Windfarm
Engineer:	Gavin & Doherty Geosolutions (GDG)

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 25/01/2023 and 07/02/2023.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Dublin Array Wind Park - Stage 1 Onshore Site Investigations

Report Reference: Additional Testing

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	6
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	1
SOIL	Bulk and dry density by Linear Measurement Method	BS 1377-2: 1990: Cl 7.2	6
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	1
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	1

Summary of Classification Test Results

Project No.

Project Name

21-1443E

Dublin Array Wind Park - Stage 1 Onshore Site Investigations

		Sar	nple			Dens	ity	W	Passing	LL	PL	PI	Particle	
Hole No.	Ref	Тор	Base	Туре	Specimen Description	bulk Mg/m	dry	%	425μm %	%	%	%	density Mg/m3	Casagrande Classification
WP2_BH03	10	3.00	3.45	D	Brown slightly sandy silty CLAY.	2.05	1.82	13					Ü	
WP2_BH03	59	8.10		D	Brown slightly sandy silty CLAY.	2.25	1.99	13						
WP2_BH03	51	27.50	28.00	В	Greyish brown slightly sandy slightly gravelly silty CLAY.	2.14	1.96	9.3						
WP2_BH04	3	4.50	4.95	D	Brown slightly sandy silty CLAY.	2.30	2.00	15	93	27 -1pt	13	14		CL
WP2_BH04	5	7.50	7.85	D	Brown slightly sandy slightly gravelly silty CLAY.	2.11	1.94	9						
WP2_BH04	24	11.50	11.95	В	Brown sandy slightly gravelly silty CLAY.	2.05	1.91	7.5						
			·				_				_	_		·

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 6

Key

Density test Liquid Limit Particle density

4pt cone unless : sp - small pyknometer

wd - water displacement wi - immersion in water

Linear measurement unless:

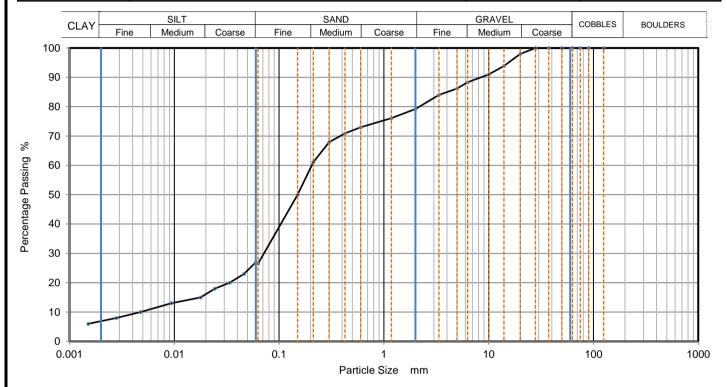
cas - Casagrande method

1pt - single point test

gj - gas jar

Date Printed

Approved By


Stephen Watson

02/07/2023 00:00

10122

CAUSEWAY	CAUSEWAY PARTICLE SIZE DISTRIBUTION			Job Ref		21-1443E	
PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		WP2_BH03		
Site Name	Dublin Array Wind Park - Stage 1 Onshore Site Investigations			Sample No.		18	
Specimen Description	Continue Description Continue and the second state of the second s				Sample	Тор	13.50
Specimen bescription	ecimen Description Greyish brown slightly gravelly clayey fine to coarse SAND.			Depth (m)	Base	15.00	
Specimen Reference	4 Specimen 13.5 m			Sample Typ	oe	В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID		Caus2022093072

	_	11	_
Siev	/ing	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.05991	27
90	100	0.04632	23
75	100	0.03373	20
63	100	0.02435	18
50	100	0.01780	15
37.5	100	0.00936	13
28	100	0.00477	10
20	98	0.00280	8
14	94	0.00151	6
10	91		
6.3	88		
5	86		
3.35	84		
2	79		
1.18	76		
0.6	73	Particle density	(assumed)
0.425	71	2.65	Mg/m3
0.3	68		
0.212	61		
0.15	50		
0.063	27		

Dry Mass of sample, g	1030
-----------------------	------

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	20.8		
Sand	52.8		
Silt	19.5		
Clay	6.9		

Grading Analysis		
D100	mm	
D60	mm	0.205
D30	mm	0.0718
D10	mm	0.00424
Uniformity Coefficient		48
Curvature Coefficient		5.9

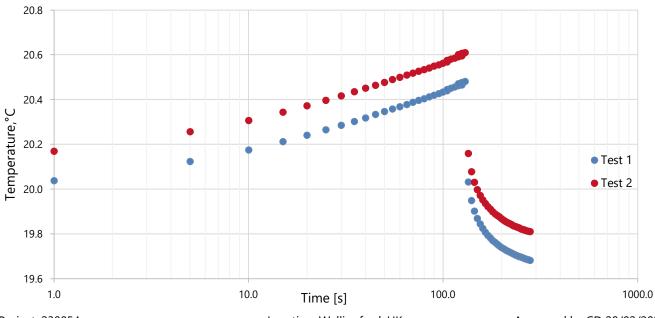
Remarks

Preparation and testing in accordance with BS1377-2:1990 unless noted below

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	5.00
Sample	25	Test Depth [m]	5.00


Visual Description

Firm, dark greyish brown, sandy, gravelly CLAY. Gravel is subangular to subrounded, fine to medium of various lithologies

Specimen Conditions			
Sample condition	Intact	Water content [%]	12.2
Wet mass [g]	3381.6	Dry density [Mg/m³]	1.76
Diameter [mm]	107.4	Bulk density [Mg/m³]	1.97
Length [mm]	188.9	Target density [Mg/m ³]	NA

Test Conditions			
Room Temperature [°C]	19.5	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

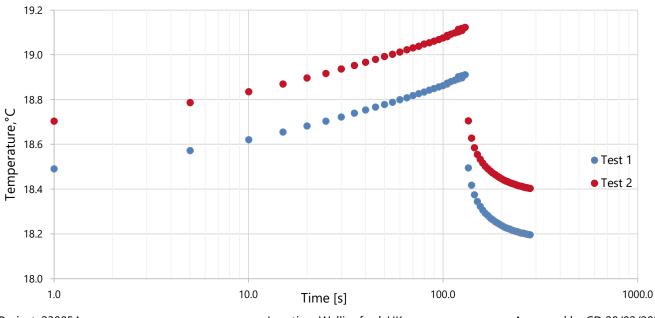
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.09	2.10
Sample Temperature [°C]	19.58	19.72
Error	0.001	0.002
Power [W/m]	3.46	3.46

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by CD 28/02/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	11.00
Sample	31	Test Denth [m]	11 00


Visual Description

Stiff, dark brown, gravelly, sandy CLAY. Gravel is subangular to subrounded, fine to medium of various lithologies

Specimen Conditions			
Sample condition	Intact	Water content [%]	12.0
Wet mass [g]	5513.0	Dry density [Mg/m ³]	1.94
Diameter [mm]	106.2	Bulk density [Mg/m³]	2.17
Length [mm]	287.3	Target density [Mg/m ³]	NA

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

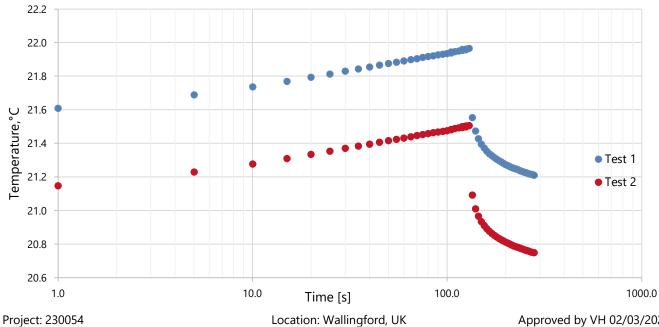
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.36	2.37
Sample Temperature [°C]	18.07	18.28
Error	0.001	0.001
Power [W/m]	3.52	3.52

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by CD 28/02/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	20.00
Sample	46	Test Depth [m]	20.00


Visual Description

Stiff, dark greyish brown, slightly gravelly, slightly sandy CLAY. Gravel is subangular, fine to medium of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	7.8
Wet mass [g]	2542.9	Dry density [Mg/m³]	2.12
Diameter [mm]	83.5	Bulk density [Mg/m ³]	2.28
Length [mm]	203.5	Target density [Mg/m ³]	2.35

Test Conditions			
Room Temperature [°C]	20	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.56	2.56
Sample Temperature [°C]	21.19	20.73
Error	0.001	0.001
Power [W/m]	3.45	3.45

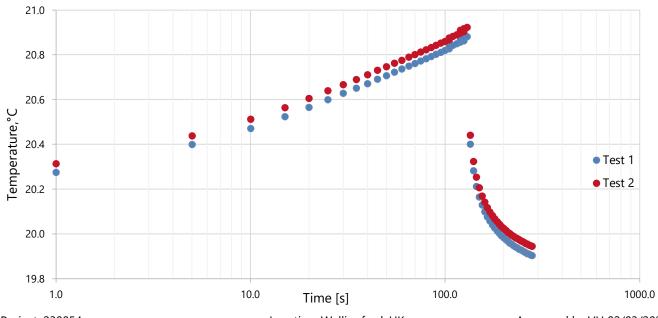
Test Page 1/1

Location: Wallingford, UK Approved by VH 02/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	26.00
Sample	50	Test Depth [m]	26.00


Visual Description

Firm to stiff, dark brown, slightly gravelly, slightly sandy CLAY. Gravel is subangular to subrounded, fine of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	8.3
Wet mass [g]	2230.2	Dry density [Mg/m³]	1.85
Diameter [mm]	84.2	Bulk density [Mg/m ³]	2.00
Length [mm]	200.4	Target density [Mg/m ³]	2.06

Test Conditions			
Room Temperature [°C]	20	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

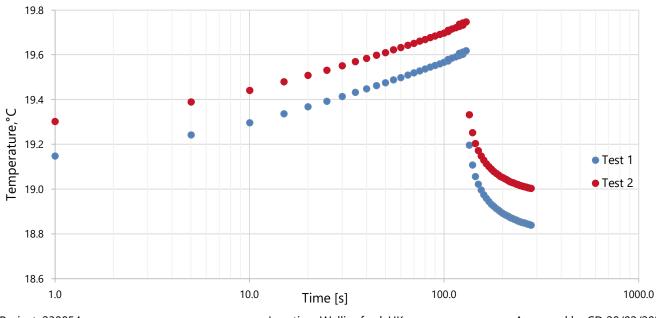
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	1.57	1.57
Sample Temperature [°C]	19.79	19.83
Error	0.001	0.001
Power [W/m]	3.45	3.45

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by VH 02/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH04	Sample Depth [m]	5.30
Sample	11	Test Depth [m]	5.30


Visual Description

Firm to stiff, brown, gravelly, sandy CLAY. Gravel is subangular to subrounded, fine to coarse of various lithologies

Specimen Conditions			
Sample condition	Intact	Water content [%]	12.2
Wet mass [g]	4550.3	Dry density [Mg/m ³]	1.89
Diameter [mm]	107.0	Bulk density [Mg/m³]	2.12
Length [mm]	239.0	Target density [Mg/m³]	NA

Test Conditions			
Room Temperature [°C]	19.5	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

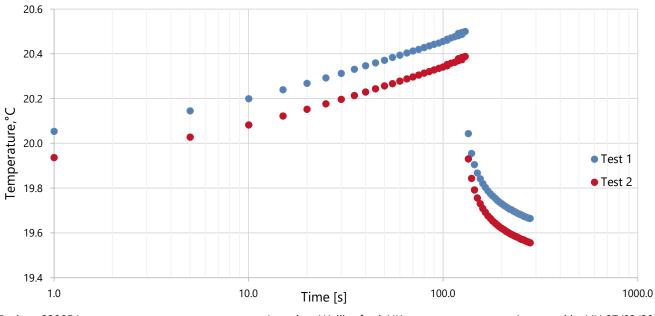
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.11	2.23
Sample Temperature [°C]	18.72	18.88
Error	0.001	0.001
Power [W/m]	3.52	3.52

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by CD 28/02/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2-BH04	Sample Depth [m]	9.25
Sample	21	Test Depth [m]	9.25


Visual Description

Olive brown silty fine to medium SAND

Specimen Conditions			
Sample condition	Reconstituted	Water content [%]	21.4
Wet mass [g]	1478.1	Dry density [Mg/m³]	1.65
Diameter [mm]	70.3	Bulk density [Mg/m ³]	2.00
Length [mm]	190.6	Target density [Mg/m ³]	1.73

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.04	2.04
Sample Temperature [°C]	19.59	19.48
Error	0.001	0.001
Power [W/m]	3.44	3.44

Project: 230054 Test Page 1/1 Location: Wallingford, UK

Approved by VH 07/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	9.50
Sample	30	Test Depth [m]	9.50

Visual Description

Stiff, yellowish brown, slightly gravelly, slightly sandy CLAY. Gravel is subangular to subrounded, fine of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	9.2
Wet mass [g]	2229.1	Dry density [Mg/m³]	1.80
Diameter [mm]	83.4	Bulk density [Mg/m³]	1.97
Length [mm]	207.3	Target density [Mg/m³]	2.06

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	1.92	1.92
Sample Temperature [°C]	19.97	20.07
Error	0.002	0.001
Power [W/m]	3.46	3.46

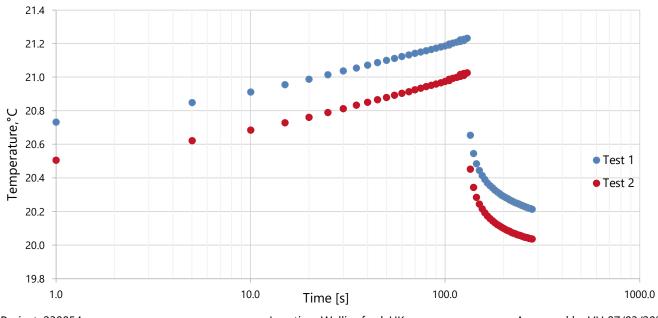
Project: 230054 Test Page 1/1 Location: Wallingford, UK

Approved by VH 07/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH03	Sample Depth [m]	23.00
Sample	48	Test Depth [m]	23.00


Visual Description

Very stiff, very dark greyish brown, gravelly, slightly sandy CLAY. Gravel is subangular to subrounded, fine to medium of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	7.5
Wet mass [g]	2250.4	Dry density [Mg/m³]	1.93
Diameter [mm]	83.0	Bulk density [Mg/m³]	2.08
Length [mm]	200.3	Target density [Mg/m³]	2.08

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

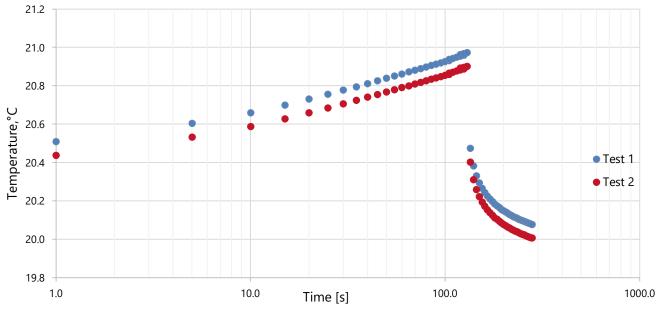
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	1.89	1.90
Sample Temperature [°C]	20.16	19.93
Error	0.001	0.002
Power [W/m]	3.43	3.43

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by VH 07/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH04	Sample Depth [m]	4.50
Sample	10	Test Depth [m]	4.50


Visual Description

Firm, brown, slightly gravelly, slightly sandy CLAY with rare coarse sand-size to fine gravel-size shell fragments. Gravel is subangular to subrounded, fine of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	13.6
Wet mass [g]	2348.3	Dry density [Mg/m³]	1.89
Diameter [mm]	83.1	Bulk density [Mg/m³]	2.14
Length [mm]	201.7	Target density [Mg/m³]	2.17

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

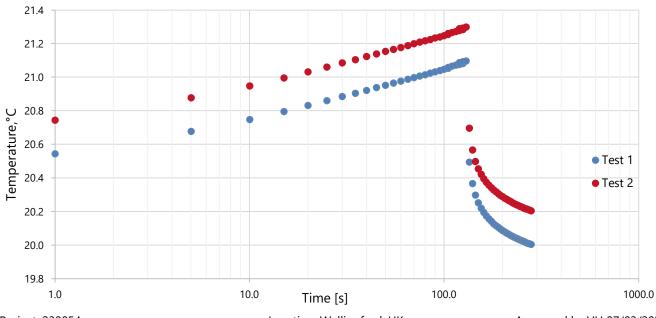
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	2.01	2.00
Sample Temperature [°C]	20.01	19.94
Error	0.001	0.001
Power [W/m]	3.56	3.56

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by VH 07/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH04	Sample Depth [m]	26.10
Sample	55	Test Depth [m]	26 10


Visual Description

Stiff, dark greyish brown, gravelly, slightly sandy CLAY. Gravel is subangular to subrounded fine to medium of various lithologies

Specimen Conditions			
Sample condition	Remoulded	Water content [%]	6.3
Wet mass [g]	2527.8	Dry density [Mg/m³]	2.06
Diameter [mm]	84.0	Bulk density [Mg/m³]	2.19
Length [mm]	208.0	Target density [Mg/m ³]	2.29

Test Conditions			
Room Temperature [°C]	19	Needle diameter [mm]	2.4
Needle	TR-3	Needle length [mm]	100
Heating time [min]	2.5	Insertion type	Pushed
Cooling time [min]	2.5	Calculation method	Inbuilt

Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	1.74	1.74
Sample Temperature [°C]	19.94	20.14
Error	0.001	0.001
Power [W/m]	3.46	3.46

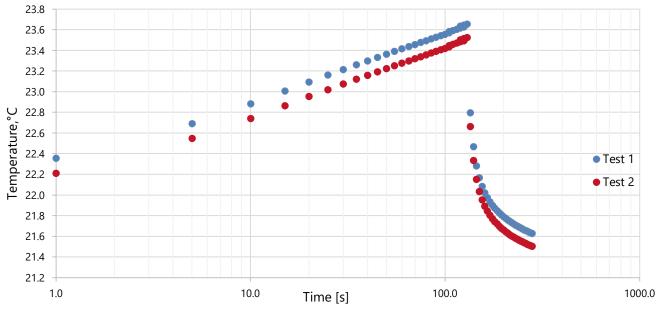
Project: 230054 Test Page 1/1 Location: Wallingford, UK

Approved by VH 07/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH04	Sample Depth [m]	5.30
Sample	11	Test Depth [m]	5.30


Visual Description

Firm to stiff brown gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of various lithologies.

Specimen Conditions			
Sample condition	Intact	Water content [%]	0.8
Wet mass [g]	3871.2	Dry density [Mg/m³]	2.01
Diameter [mm]	102.0	Bulk density [Mg/m³]	2.03
Length [mm]	233.2	Target density [Mg/m ³]	NA

Test Conditions					
Room Temperature [°C]	20	Needle diameter [mm]	2.4		
Needle	TR-3	Needle length [mm]	100		
Heating time [min]	2.5	Insertion type	Pushed		
Cooling time [min]	2.5	Calculation method	Inbuilt		

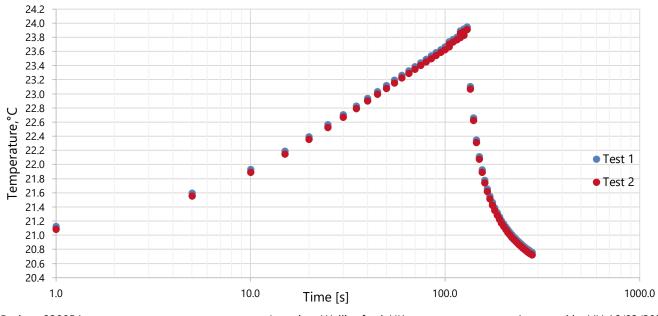
Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	0.87	0.87
Sample Temperature [°C]	21.49	21.34
Error	0.003	0.003
Power [W/m]	3.44	3.44

Project: 230054 Test Page 1/1 Location: Wallingford, UK Approved by VH 16/03/2023

Thermal Conductivity by Thermal Needle Probe

ASTM D5334-22

Test Identification			
Borehole	WP2_BH04	Sample Depth [m]	9.25
Sample	21	Test Depth [m]	9.25


Visual Description

Olive brown silty fine to medium SAND

Specimen Conditions					
Sample condition	Reconstituted	Water content [%]	0.1		
Wet mass [g]	1197.6	Dry density [Mg/m ³]	1.72		
Diameter [mm]	70.5	Bulk density [Mg/m ³]	1.72		
Length [mm]	178.7	Target density [Mg/m ³]	1.73		

Test Conditions					
Room Temperature [°C]	19.5	Needle diameter [mm]	2.4		
Needle	TR-3	Needle length [mm]	100		
Heating time [min]	2.5	Insertion type	Pushed		
Cooling time [min]	2.5	Calculation method	Inbuilt		

Test Results	Test 1	Test 2
Thermal Conductivity [W/mK]	0.32	0.32
Sample Temperature [°C]	20.26	20.22
Error	0.014	0.014
Power [W/m]	3.45	3.45

Project: 230054 Test Page 1/1 Location: Wallingford, UK

Approved by VH 16/03/2023

D₅₀

 D_{30}

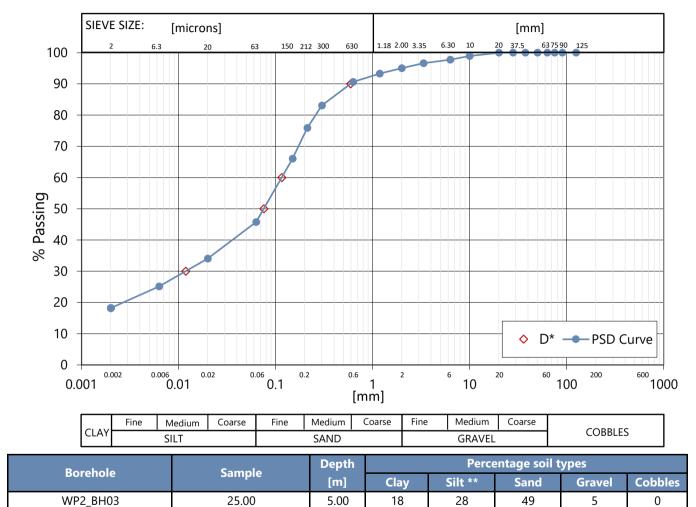
D₁₀

Date: 13/04/2023 Date: 14/04/2023

Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH03_25_ps.XLS

Drawn by: LB Date: 13/04/2023

% Passing	Particle Size (mm)		
100	125		
100	90.0		
100	75.0		
100	63.0		
100	50.0		
100	37.5		
100	28.0		
100	20.0	_	
99	10.0	Sieving	
98	6.30	Sie	
97	3.35		
95	2.00		
93	1.18		
91	0.630		
83	0.300		
76	0.212		
66	0.150		
46	0.0630		
34	0.0200	ien- n	
25	0.00630	Sedimen- tation	
18	0.00200	Se	
Sieving:			
Initial dry mass	of sample - sieve [g]	449.63	
Sedimentation	n:		
	on 63µm sieve [g]	9.79	
Particle density	2.70		
(Assumed)	2.70		
Grading Analy			
D ₉₀	0.5930	[mm]	
D ₆₀	0.1158	[mm]	


0.0756

0.0119

[mm]

[mm]

[mm]

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

18

28

49

5

0

Description	Remarks
Greyish brown slightly gravelly sandy CLAY	

5.00

Checked by: LB

Date: 13/04/2023 Date: 14/04/2023

Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH03_30_ps.XLS

Approved by: PH

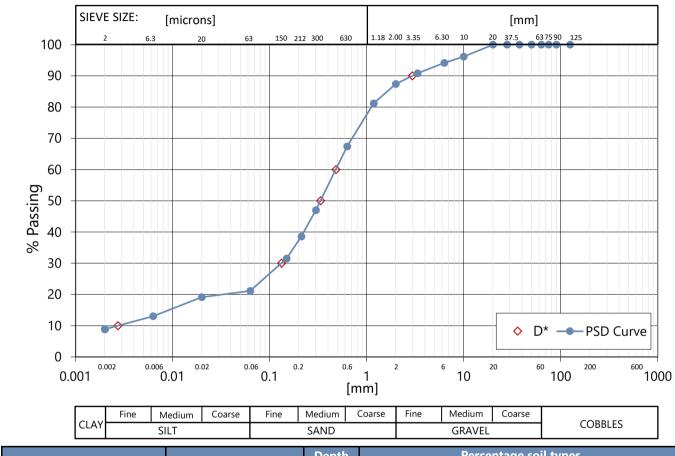
D₅₀

 D_{30}

D₁₀

% Passing	Particle Size (mm)		
100	125		
100	90.0		
100	75.0		
100	63.0		
100	50.0		
100	37.5		
100	28.0		
100	20.0		
96	10.0	Sieving	
94	6.30	Siev	
91	3.35	0,	
87	2.00		
81	1.18		
67	0.630		
47	0.300		
39	0.212		
31	0.150		
21	0.0630		
19	0.0200	en- n	
13	0.00630	Sedimen: tation	
9	0.00200	Sec ta	
Sieving:			
Initial dry mass	of sample - sieve [g]	#####	
Sedimentation	1:		
Mass retained	Mass retained on 63μm sieve [g]		
Particle density for sedimentation		2.70	
(Assumed)	2.70		
Grading Analy			
D ₉₀	2.9576	[mm]	
D ₆₀	0.4816	[mm]	

0.3347


0.1327

0.0027

[mm]

[mm]

[mm]

Drawn by: LB

Date: 13/04/2023

Borehole	Sample	Depth	Depth Percentage soil types				
Borellole	Sample	[m]	Clay	Silt **	Sand	Gravel	Cobbles
WP2_BH03	30.00	9.50	9	12	66	13	0

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Yellowish brown gravelly silty SAND. Gravel is fine to	
medium	

D₅₀

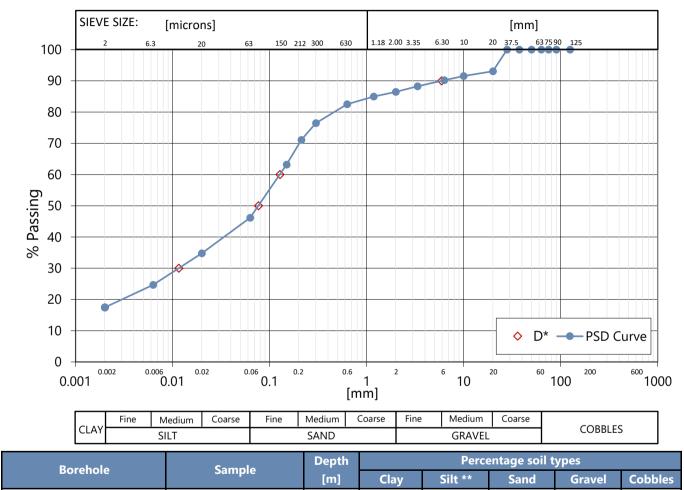
 D_{30}

D₁₀

Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2 BH03_31_ps.XLS

Drawn by: LB	
Date: 13/04/20	2

100 100 100	125 90.0		
	90.0		
100	50.0		
	75.0		
100	63.0		
100	50.0		
100	37.5		
100	28.0		
93	20.0	_	
92	10.0	Sieving	
90	6.30	Sie	
88	3.35		
86	2.00		
85	1.18		
83	0.630		
76	0.300		
71	0.212		
63	0.150		
46	0.0630		
35	0.0200	en- n	
25	0.00630	Sedimen- tation	
17	0.00200	Se	
Sieving:			
Initial dry mass o	of sample - sieve [g]	740.44	
Sedimentation:			
Mass retained or	n 63μm sieve [g]	8.68	
Particle density for sedimentation		2.70	
(Assumed)		2.70	
Grading Analysis			
Grading Analysi			
Grading Analysi D ₉₀	5.9076	[mm]	


0.0767

0.0116

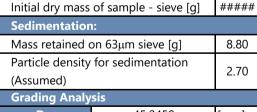
[mm]

[mm]

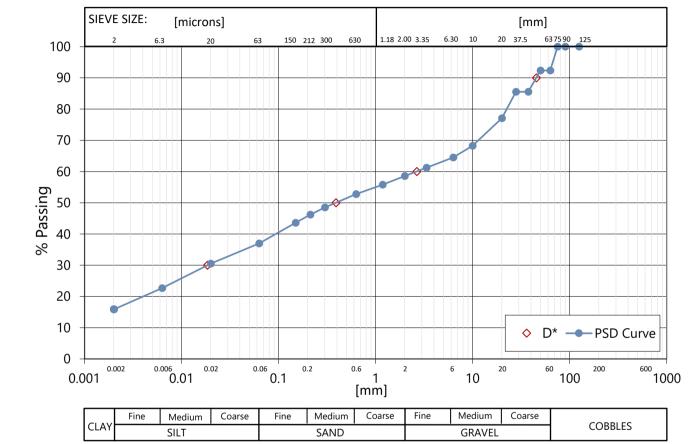
[mm]

Dorelloic	Sample	[m]	Clay	Silt **	Sand	Gravel	Cobbles
WP2_BH03	31.00	11.00	17	29	40	14	0

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns


Description	Remarks
Light brown slightly gravelly sandy CLAY. Gravel is fine to	
medium	

Checked by: LB


Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2 BH03_48 ps.XLS Drawn by: LB Date: 13/04/2023

Аp	pro	ve	d by	: Pŀ

Approved by: PH Date: 14/04,					
% Passing	Particle Size (mm)				
100	125				
100	90.0				
100	75.0				
92	63.0				
92	50.0				
86	37.5				
86	28.0				
77	20.0				
68	10.0	ing			
65	6.30	Sieving			
61	3.35	0,			
59	2.00				
56	1.18				
53	0.630				
48	0.300				
46	0.212				
44	0.150				
37	0.0630				
31	0.0200	en- n			
23	0.00630	Sedimen- tation			
16	0.00200	Sec			
Sieving:	Sieving:				
Initial dry mass	of sample - sieve [g]	#####			
Sedimentation	1:				
Mass retained o	Mass retained on 63μm sieve [g] 8.80				

Grauing Analysis			
D ₉₀	45.2459 [mm		
D ₆₀	2.6498	[mm]	
D ₅₀	0.3893	[mm]	
D ₃₀	0.0185	[mm]	
D ₁₀	i	[mm]	

Borehole	Sample	Depth		Perce	entage soil t	ypes	
Borellole	Sample	[m]	Clay	Silt **	Sand	Gravel	Cobbles
WP2_BH03	48.00	23.00	16	21	22	33	8

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Dark grey slightly gravelly slightly sandy CLAY. Gravel is	
fine to coarse	

 D_{60}

D₅₀

D₃₀

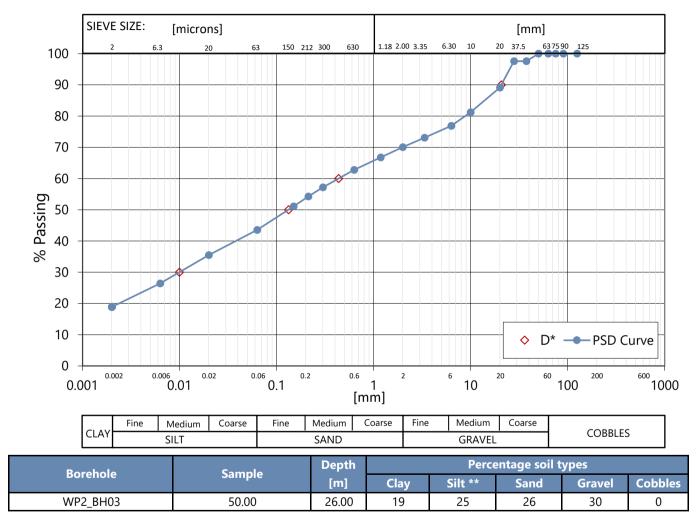
D₁₀

Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2 BH03_50_ps.XLS Drawn by: LB Date: 13/04/2023

% Passing	Particle Size (mm)			
100	125			
100	90.0			
100	75.0			
100	63.0			
100	50.0			
98	37.5			
98	28.0			
89	20.0			
81	10.0	Sieving		
77	6.30	Siev		
73	3.35			
70	2.00			
67	1.18			
63	0.630			
57	0.300			
54	0.212			
51	0.150			
44	0.0630			
35	0.0200	en- n		
26	0.00630	Sedimen tation		
19	0.00200	Sec		
Sieving:				
Initial dry mass	of sample - sieve [g]	#####		
Sedimentation	Sedimentation:			
Mass retained on 63µm sieve [g]		8.60		
Particle density	Particle density for sedimentation			
(Assumed)		2.70		
Grading Analy	rsis			
D ₉₀	20.7116	[mm]		

0.4355

0.1326


0.0100

[mm]

[mm]

[mm]

[mm]

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Dark grey slightly gravelly slightly sandy CLAY. Gravel is	
fine to medium	

Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH04_10_ps.XLS Drawn by: JC Date: 03/04/2023

% Passing	Particle Size (mm)	
100	125	
100	90.0	
100	75.0	
100	63.0	
100	50.0	
100	37.5	
100	28.0	
100	20.0	
100	10.0	Sieving
100	6.30	Siev
100	3.35	0,
99	2.00	
97	1.18	
96	0.630	
93	0.300	
89	0.212	
84	0.150	
66	0.0630	
56	0.0200	en- n
44	0.00630	Sedimen tation
33	0.00200	Sec
Sieving:		
Initial dry mass	of sample - sieve [g]	448.54
Sedimentation	1:	
Mass retained o	7.61	
Particle density	2.70	
(Assumed)	2.70	
Grading Analy		
D ₉₀	0.2252	[mm]

0.0320

0.0114

[mm]

[mm]

[mm]


[mm]

 D_{60}

D₅₀

D₃₀

D₁₀

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Light brown slightly gravelly slightly sandy CLAY	

 D_{60}

D₅₀

 D_{30}

D₁₀

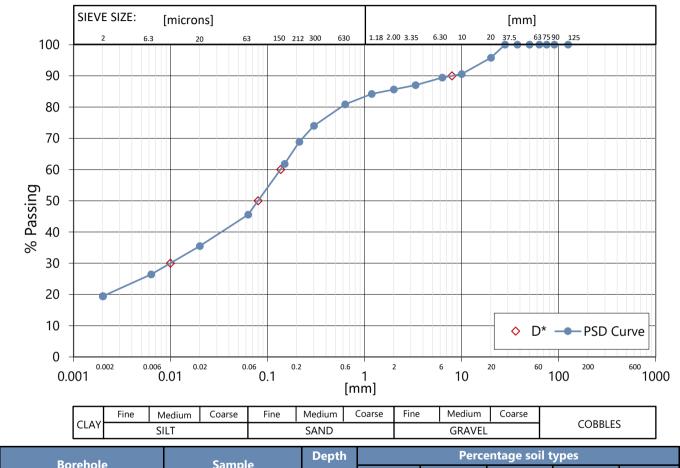
Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH04_11_ps.XLS

Drawn by: LB Date: 13/04/2023

% Passing	Particle Size (mm)	
100	125	
100	90.0	
100	75.0	
100	63.0	
100	50.0	
100	37.5	
100	28.0	
96	20.0	_
91	10.0	Sieving
89	6.30	Sie
87	3.35	
86	2.00	
84	1.18	
81	0.630	
74	0.300	
69	0.212	
62	0.150	
46	0.0630	
36	0.0200	ien- n
26	0.00630	Sedimen tation
19	0.00200	Se
Sieving:		
Initial dry mass	of sample - sieve [g]	#####
Sedimentation	n:	
Mass retained o	7.98	
Particle density	2.70	
(Assumed)	2.70	
Grading Analy		
D ₉₀	7.9253	[mm]

0.1362

0.0799


0.0099

[mm]

[mm]

[mm]

[mm]

Borehole	Sample [m]	Depth		Perce	entage soil t	ypes	
Dorellole		[m]	Clay	Silt **	Sand	Gravel	Cobbles
WP2_BH04	11.00	5.30	19	27	40	14	0

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Brown slightly gravelly sandy CLAY. Gravel is fine to	
medium	

 D_{60}

D₅₀

D₃₀

D₁₀

Date: 10/03/2023 Date: 14/04/2023

WP2_BH04

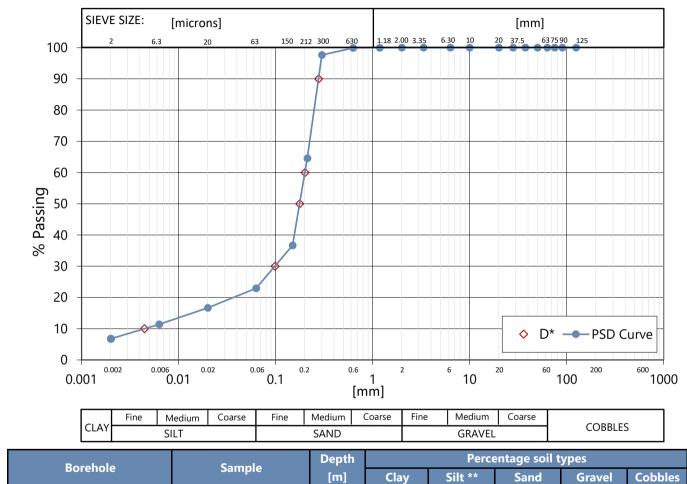
Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH04_21_ps.XLS Drawn by: JK Date: 07/03/2023

% Passing	Particle Size (mm)		
100	125		
100	90.0		
100	75.0		
100	63.0		
100	50.0		
100	37.5		
100	28.0		
100	20.0		
100	10.0	Sieving	
100	6.30	Siev	
100	3.35		
100	2.00		
100	1.18		
100	0.630		
98	0.300		
65	0.212		
37	0.150		
23	0.0630		
17	0.0200	en-	
11	0.00630	Sedimen tation	
7	0.00200	Sec	
Sieving:			
Initial dry mass	of sample - sieve [g]	324.96	
Sedimentation	1:		
Mass retained o	55.83		
Particle density	2.70		
(Assumed)			
Grading Analy			
D ₉₀	0.2768	[mm]	

0.2004

0.1770

0.0984


0.0045

[mm]

[mm]

[mm]

[mm]

16

77

0

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

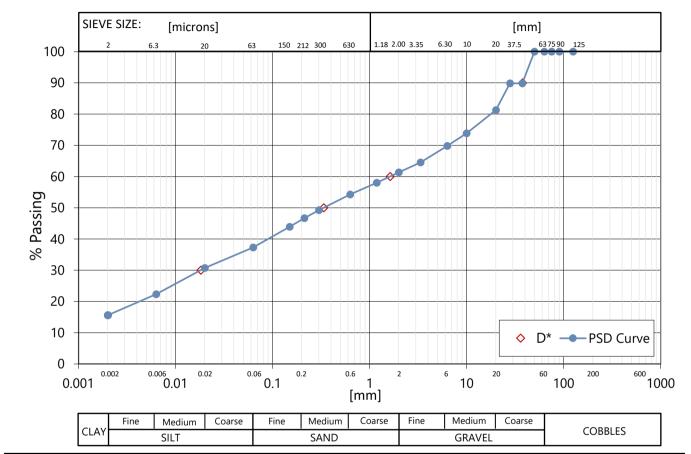
Description	Remarks
Yellow silty fine to medium SAND	

9.25

Tested in accordance with ISO 17892-4: 2016 - 5.2 & 5.4 - Sieving & Sedimentation by pipette method

21.00

Checked by: LB


Date: 13/04/2023 Date: 14/04/2023 Template Issue: 5.0 Filename: 230054 / Labdata / Class / PSD / WP2_BH04_55_ps.XLS

Drawn	by:	LB
Date: 1	3/0	4/202

Approved by: PH	Date	e: 14/04/2
% Passing	Particle Size (mm)	
100	125	
100	90.0	
100	75.0	
100	63.0	
100	50.0	
90	37.5	
90	28.0	
81	20.0	
74	10.0	ing
70	6.30	Sieving
65	3.35	0,
61	2.00	
58	1.18	
54	0.630	
49	0.300	
47	0.212	
44	0.150	
37	0.0630	
31	0.0200	en- n
22	0.00630	Sedimen- tation
16	0.00200	Sec
Sieving:		

Sieving:	
Initial dry mass of sample - sieve [g]	#####
Sedimentation:	
Mass retained on 63µm sieve [g]	9.15
Particle density for sedimentation	2.70
(Assumed)	2.70
Grading Analysis	

D ₉₀	37.6774	[mm]						
D ₆₀	1.6235	[mm]						
D ₅₀	0.3359	[mm]						
D ₃₀	0.0182	[mm]						
D ₁₀	-	[mm]						

Borehole	Sample	Depth	Percentage soil types						
	Sample	[m]	Clay	Silt **	Sand	Gravel	Cobbles		
WP2_BH04	55.00	26.10	16	21	24	39	0		

** Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Description	Remarks
Grey gravelly slightly sandy CLAY. Gravel is fine to coarse	

Checked by: PH

Date: 22/02/2023

Template Issue: 3

Drawn by: TM

Date: 20/02/2023

Approved by: PH

Date: 22/02/2023

Filename: / Labdata / Class / MM /_mm list (JIP).XLS

Borehole	Sample	Depth		Minimum Dry Density				
		[m]	Before surcharge 1	Before surcharge 2	After surcharge 1	After surcharge 2	[Mg/m³]	
Borehole WP2_BH04	Sample 21		Before surcharge 1 1.76	[Mg	ı/m³]	After surcharge 2 1.81	Minimum Dry Density [Mg/m³] 1.30	*
			[m]	[m] Before surcharge 1	Borehole Sample Depth [Mg [m] Before surcharge 1 Before surcharge 2	[m] Before surcharge 1 Before surcharge 2 After surcharge 1	Borehole Sample Depth [Mg/m³] [m] Before surcharge 1 Before surcharge 2 After surcharge 1 After surcharge 2	Borehole Sample Depth [Mg/m³] Dry Density [m] Before surcharge 1 Before surcharge 2 After surcharge 1 After surcharge 2 [Mg/m³]

Soil Environment Services Ltd

LABORATORY TEST CERTIFICATE

Client:

Causeway Geotech Limited

Unit 1 Fingal House,

Stephenstown Industrial Estate,

Balbriggan, Co Dublin, K32 VR66

Contact: Sean Ross

Client Job Ref.: 21-1443E Dublin Array

Samples Received: 24/01/2023

Analysis Completed: 01/03/2023

Certificate Issued: 02/03/2023

Material: Natural Soils/ rocks

Tests: Thermal Resistivity - BS8990 hotbox

Notes:

- Bulk samples disposed of 28 days from date of receipt unless otherwise instructed.
- Unless otherwise stated, Soil Environment Services Ltd was not responsible for sampling.
- This report shall not be reproduced, except in full, without written approval of Soil Environment Services Ltd.

Results reported relate only to the samples supplied.

Tested on behalf of Soil Environment Services by:

Dr Robin S Davies BSc PhD (Soil Physics) FISoilSci

Managing Director

Quality and Standards

We test to the requirements of the following specifications.

ENA TS 97-1, Issue 2 2016 ASTM D5334 - 14 IEEE Std 442 - 2017 National Grid TS 3.05.07 BS 1377

All test equipment is calibrated to manufacturer's requirements.

Soil Environment Services Ltd

Unit 8, Stocksfield Hall, Stocksfield, Northumberland, NE43 7TN Tel: 01661 844827 www.soilenvironmentservices.co.uk

Email: rd@soilenvironmentservices.co.uk

Company Registration Number 4538894 England and Wales Directors: Dr R S Davies BSc PhD MISoilSci. Dr M T Davies BSc PhD MA

Thermal Properties - Test Data									
Laboratory sample ref:	Sample moisture status	Thermal Test 1	resistivity Test 2	(Km/W) Test 3	Average Resistivity (Km/W)	Test moisture (% w/w)	Porosity (% v/v)	Dry bulk density (Mg/m ³⁾	Strata Description
WP2_BH03 12.0-13.5 m	Saturated	0.544	0.549	0.543	0.545	18.010	0.320	1.794	Brown fine sandy/clayey
17	Zero m.c.	4.666	4.655	4.647	4.656	0.000			coarse micaceous GRAVEL
WP2_BH04 15.0-16.5 m	Saturated	0.718	0.702	0.711	0.710	14.677	0.280	1.908	Brown fine sandy/clayey
36	Zero m.c.	5.071	5.055	5.064	5.063	0.000			coarse GRAVEL
WP2_BH04 19.5-21.0 m	Saturated	0.520	0.528	0.551	0.533	17.766	0.319	1.805	Brown fine sandy/clayey
40	Zero m.c.	4.003	3.904	3.823	3.910	0.000			coarse GRAVEL
Notes									
1 Hotbox ope	erates with a san	nple block of	18 cm x 1	8 cm x 9	cm depth.				
2 The sample was oven dried at 105C and compacted dry to achieve a typical field density									
2 A temperature difference was created fluctuating around 20C from the hot to the cool side.									
3 The equilibrium period is two hours followed by three two hour test periods with readings taken every 10 seconds.									nds.
4 Calibration	is undertaken w	vith Standar	d BS4550	density sa	and at 2.63 M	g/m3. TR c	dry = 3.979 Kr	m/W and satu	urated = 0.428 Km/W.
5 A standard	heat transfer ed	guation is us	ed to calcu	ulate the T	R.				

A Test specifications

- 1. Determination of steady-state thermal transmission properties. Calibrated and guarded hot box *European Standards.* Standard number: BS EN ISO 8990:1996
- 2. Thermal test method: Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM Designation D5334-14, 2015.

B Test equipment

- 1. BS 8990 Hotbox
- 2. TEMPOS or KD2 Thermal analyser.
- 3. RK1 4 dia mm rock probe with a 0.5 mm copper sheath
- 4. ELE Proctor ~1 litre mould with an ELE 4.5 kg hammer. Or ~80 mm dia aluminium cores.
- 5. Impact Test Equipment soil drying oven set at 105°C.

APPENDIX J ENVIRONMENTAL LABORATORY TEST RESULTS

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-34352-1

Initial Date of Issue: 19-Sep-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen Watson

Stuart Abraham Thomas McAllister Ciaran Dohert

Project 21-1443E Dub ARR Onshore Site

Investigation

Quotation No.: Q22-28722 Date Received: 08-Sep-2022

Order No.: Date Instructed: 09-Sep-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 20-Sep-2022

Date Approved: 19-Sep-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 21-1443E Dub ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		Chemtest Job No.:					
Quotation No.: Q22-28722		Chemtest Sample ID. Client Sample Ref.					
Order No.:		2					
			Sample Lo		WP2-BH04		
			Sampl	е Туре:	SOIL		
			Top Dep	oth (m):	1.00		
			Date Sa	ampled:	06-Sep-2022		
			Asbest	os Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	ı		
Asbestos Identification	U	2192		N/A	No Asbestos		
Aspestos identification	U	2192		IN/A	Detected		
Moisture	N	2030	%	0.020	6.7		
Alkali Reserve	N		g NaOH eq	0.010	< 0.010		
рН	U	2010		4.0	8.4		
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.42		
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.036		
Chloride (Water Soluble)	U	2220	g/l	0.010	0.48		
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50		
Arsenic	U	2455	mg/kg	0.5	5.0		
Barium	U	2455	mg/kg	0	68		
Beryllium	U	2455	mg/kg	0.5	< 0.5		
Cadmium	U	2455	mg/kg	0.10	0.21		
Chromium	U	2455	mg/kg	0.5	20		
Molybdenum	U	2455	mg/kg	0.5	0.8		
Antimony	N	2455	mg/kg	2.0	< 2.0		
Copper	U	2455	mg/kg	0.50	23		
Mercury	U	2455	mg/kg	0.05	< 0.05		
Nickel	U	2455	mg/kg	0.50	22		
Lead	U	2455	mg/kg	0.50	9.2		
Selenium	U	2455	mg/kg	0.25	0.41		
Zinc	U	2455	mg/kg	0.50	34		
Chromium (Trivalent)	N	2490	mg/kg	1.0	20		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		
Organic Matter	U	2625	%	0.40	2.4		
Total Organic Carbon	U	2625	%	0.20	1.4		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		

Results - Soil

Project: 21-1443E Dub ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		ob No.:	22-34352				
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1502763		
Order No.:		Client Sample Ref.:					
		Sample Location:					
		Sample Type:					
			Top Dep	oth (m):	1.00		
			Date Sa	ampled:	06-Sep-2022		
			Asbest	os Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10		
Benzene	U	2760	μg/kg	1.0	< 1.0		
Toluene	U	2760	μg/kg	1.0	< 1.0		
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0		
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0		
o-Xylene	U	2760	μg/kg	1.0	< 1.0		
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0		
Naphthalene	U	2800	mg/kg	0.10	< 0.10		
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10		
Acenaphthene	U	2800	mg/kg	0.10	< 0.10		
Fluorene	U	2800	mg/kg	0.10	< 0.10		
Phenanthrene	U	2800	mg/kg	0.10	< 0.10		
Anthracene	U	2800	mg/kg	0.10	< 0.10		
Fluoranthene	U	2800	mg/kg	0.10	0.80		
Pyrene	U	2800	mg/kg	0.10	0.73		
Benzo[a]anthracene	U	2800	mg/kg	0.10	0.32		
Chrysene	U	2800	mg/kg	0.10	0.21		
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	0.64		
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	0.15		
Benzo[a]pyrene	U	2800	mg/kg	0.10	0.38		
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10		
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10		
Total Of 16 PAH's	N	2800	mg/kg	2.0	3.2		
Total Phenols	U	2920	mg/kg	0.10	< 0.10		

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-34767-1

Initial Date of Issue: 22-Sep-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey Stephen Watson Stuart Abraham Thomas McAllister Ciaran Dohert

Project 21-1443E Dub ARR Onshore Site

Investigation

Quotation No.: Q22-28722 Date Received: 12-Sep-2022

Order No.: Date Instructed: 12-Sep-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 21-Sep-2022

Date Approved: 22-Sep-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 21-1443E Dub ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		Chemtest Job No.:						
Quotation No.: Q22-28722		Chemtest Sample ID.						
Order No.:		3						
			Sample Lo		WP2_BH03			
			Sample	е Туре:	SOIL			
			Top Dep	oth (m):	0.50			
			Date Sa	ampled:	08-Sep-2022			
			Asbest	os Lab:	DURHAM			
Determinand	Accred.	SOP	Units	LOD				
ACM Type	U	2192		N/A	1			
Asbestos Identification	U	2192		N/A	No Asbestos			
Aspestos identification	U	2192		IN/A	Detected			
Moisture	N	2030	%	0.020	6.3			
Alkali Reserve	N		g NaOH eq	0.010	< 0.010			
рН	М	2010		4.0	9.1			
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	< 0.40			
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010			
Chloride (Water Soluble)	М	2220	g/l	0.010	< 0.010			
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50			
Arsenic	М	2455	mg/kg	0.5	7.4			
Barium	М	2455	mg/kg	0	35			
Beryllium	U	2455	mg/kg	0.5	< 0.5			
Cadmium	M	2455	mg/kg	0.10	0.55			
Chromium	М	2455	mg/kg	0.5	13			
Molybdenum	M	2455	mg/kg	0.5	0.7			
Antimony	N	2455	mg/kg	2.0	< 2.0			
Copper	M	2455	mg/kg	0.50	17			
Mercury	М	2455	mg/kg	0.05	0.14			
Nickel	М	2455	mg/kg	0.50	15			
Lead	М	2455	mg/kg	0.50	22			
Selenium	M	2455	mg/kg	0.25	< 0.25			
Zinc	М	2455	mg/kg	0.50	48			
Chromium (Trivalent)	N	2490	mg/kg	1.0	13			
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50			
Organic Matter	М	2625	%	0.40	1.2			
Total Organic Carbon	M	2625	%	0.20	0.69			
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C16-C21	M	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0			
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0			

Results - Soil

Project: 21-1443E Dub ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		ob No.:	22-34767				
Quotation No.: Q22-28722		Chemtest Sample ID.:					
Order No.:		Client Sample Ref.:					
		Sample Location:					
		Sample Type:					
			Top Dep	oth (m):	0.50		
			Date Sa	ampled:	08-Sep-2022		
			Asbest	os Lab:	DURHAM		
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10		
Benzene	М	2760	μg/kg	1.0	< 1.0		
Toluene	М	2760	μg/kg	1.0	< 1.0		
Ethylbenzene	М	2760	μg/kg	1.0	< 1.0		
m & p-Xylene	М	2760	μg/kg	1.0	< 1.0		
o-Xylene	М	2760	μg/kg	1.0	< 1.0		
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0	< 1.0		
Naphthalene	М	2800	mg/kg	0.10	< 0.10		
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10		
Acenaphthene	М	2800	mg/kg	0.10	< 0.10		
Fluorene	М	2800	mg/kg	0.10	< 0.10		
Phenanthrene	М	2800	mg/kg	0.10	< 0.10		
Anthracene	М	2800	mg/kg	0.10	< 0.10		
Fluoranthene	М	2800	mg/kg	0.10	0.14		
Pyrene	М	2800	mg/kg	0.10	0.15		
Benzo[a]anthracene	М	2800	mg/kg	0.10	< 0.10		
Chrysene	М	2800	mg/kg	0.10	< 0.10		
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	< 0.10		
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	< 0.10		
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	< 0.10		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10		
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	< 0.10		
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0		
Total Phenols	М	2920	mg/kg	0.10	< 0.10		

Results - 2 Stage WAC

Pro	ject:	21-1443E	Dub ARR	Onshore Site	Investig	ation

Project. 21-1443E Dub ARR Offsh	ore one investigation								
Chemtest Job No:	22-34767						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1504701							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:								reactive	
Sample Location:	WP2_BH03							hazardous	Hazardous
Top Depth(m):	0.50						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	08-Sep-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.69	3	5	6
Loss On Ignition	2610	M	%			2.3			10
Total BTEX	2760	M	mg/kg			< 0.010	6		-
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
pH	2010	M				9.1		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0090		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0025	0.0014	0.0050	0.015	0.5	2	25
Barium	1455	U	0.009	< 0.005	0.018	0.014	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.015	0.0010	0.030	0.033	0.5	10	70
Copper	1455	U	0.0087	0.0016	0.017	0.014	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0073	0.0028	0.015	0.035	0.5	10	30
Nickel	1455	U	0.0007	< 0.0005	0.0013	0.0011	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0020	0.0008	0.0039	0.010	0.06	0.7	5
Selenium	1455	U	0.0018	0.0006	0.0037	0.0083	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	7.3	< 1.0	15	12	800	15000	25000
Fluoride	1220	U	0.34	0.18	< 1.0	2.1	10	150	500
Sulphate	1220	U	44	9.1	88	150	1000	20000	50000
Total Dissolved Solids	1020	N	160	95	320	1100	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	6.6	10	< 50	95	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.175		
Moisture (%)	6.3		

Leachate Test Information				
Leachant volume 1st extract/l	0.338			
Leachant volume 2nd extract/l	1.400			
Eluant recovered from 1st extract/l	0.280			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-35424-1

Initial Date of Issue: 26-Sep-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 15-Sep-2022

Order No.: Date Instructed: 15-Sep-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 26-Sep-2022

Date Approved: 26-Sep-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-35424
Quotation No.: Q22-28722			test Sam		1507438
Order No.:		Cl	le Ref.:	1	
			Sample Lo		WP2_BH02
			е Туре:	SOIL	
			Top Dep	` '	0.5
			Date Sa		13-Sep-2022
				os Lab:	COVENTRY
Determinand	Accred.	SOP	Units	LOD	
ACM Type	U	2192		N/A	<u> </u>
Asbestos Identification	U	2192		N/A	No Asbestos Detected
Moisture	N	2030	%	0.020	14
Alkali Reserve	N		g NaOH eq	0.010	< 0.010
рН	U	2010		4.0	8.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.54
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	0.80
Arsenic	U	2455	mg/kg	0.5	8.3
Barium	U	2455	mg/kg	0	29
Beryllium	U	2455	mg/kg	0.5	0.6
Cadmium	U	2455	mg/kg	0.10	0.50
Chromium	U	2455 2455	mg/kg	0.5	12 0.8
Molybdenum Antimony	N	2455	mg/kg mg/kg	2.0	< 2.0
Copper	U	2455	mg/kg	0.50	12
Mercury	U	2455	mg/kg	0.05	< 0.05
Nickel	Ü	2455	mg/kg	0.50	16
Lead	Ü	2455	mg/kg	0.50	15
Selenium	Ü	2455	mg/kg	0.25	0.57
Zinc	U	2455	mg/kg	0.50	40
Chromium (Trivalent)	N	2490	mg/kg	1.0	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50
Organic Matter	U	2625	%	0.40	4.1
Total Organic Carbon	U	2625	%	0.20	2.4
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd	Chemtest Job No			ob No.:	22-35424	
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1507438	
Order No.:		Client Sample Ref.				
		;	Sample Lo	ocation:	WP2_BH02	
			Sampl	е Туре:	SOIL	
			Top Dep	oth (m):	0.5	
			Date Sa	ampled:	13-Sep-2022	
			Asbest	os Lab:	COVENTRY	
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	
Benzene	U	2760	μg/kg	1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0	
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	
o-Xylene	U	2760	μg/kg	1.0	< 1.0	
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	
Naphthalene	U	2800	mg/kg	0.10	< 0.10	
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	
Fluorene	U	2800	mg/kg	0.10	< 0.10	
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	
Anthracene	U	2800	mg/kg	0.10	< 0.10	
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	
Pyrene	U	2800	mg/kg	0.10	< 0.10	
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	
Chrysene	U	2800	mg/kg	0.10	< 0.10	
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	
Total Phenols	U	2920	mg/kg	0.10	< 0.10	

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-36038-1

Initial Date of Issue: 30-Sep-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCrack

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 21-Sep-2022

Order No.: Date Instructed: 22-Sep-2022

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 30-Sep-2022

Date Approved: 30-Sep-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-36038
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1510111
Order No.:		Client Sample Ref.:			5
		Sample Location			WP2-BH01
		Sample Type			SOIL
			Top Dep	oth (m):	1.5
			Date Sa	ampled:	19-Sep-2022
			Asbest	os Lab:	NEW-ASB
Determinand	Accred.	SOP	Units	LOD	
ACM Type	U	2192		N/A	-
A 1		0400		N 1/0	No Asbestos
Asbestos Identification	U	2192		N/A	Detected
Moisture	N	2030	%	0.020	7.3
Alkali Reserve	N		g NaOH eq	0.010	< 0.010
pH	U	2010		4.0	9.2
Boron (Hot Water Soluble)	Ü	2120	mg/kg	0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.020
Chloride (Water Soluble)	Ü	2220	g/l	0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50
Arsenic	Ü	2455	mg/kg	0.5	6.7
Barium	Ü	2455	mg/kg	0.5	23
Beryllium	U	2455	mg/kg	0.5	0.6
Cadmium	U	2455	mg/kg	0.10	0.63
Chromium	U	2455	mg/kg	0.10	6.8
Molybdenum	U	2455	mg/kg	0.5	0.8
·	N	2455		2.0	< 2.0
Antimony	U	2455	mg/kg	0.50	9.4
Copper	U	2455	mg/kg	0.05	
Mercury Nickel	U		mg/kg		< 0.05
	U	2455	mg/kg	0.50	14
Lead	U	2455	mg/kg	0.50	10
Selenium		2455	mg/kg	0.25	0.50
Zinc	U	2455	mg/kg	0.50	28
Chromium (Trivalent)	N	2490	mg/kg	1.0	6.8
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40
Total Organic Carbon	U	2625	%	0.20	< 0.20
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd	Chemtest Job No			ob No.:	22-36038
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1510111
Order No.:		CI	ient Samp	le Ref.:	5
		;	Sample Lo	ocation:	WP2-BH01
			Sampl	е Туре:	SOIL
			Top Dep	oth (m):	1.5
			Date Sa	ampled:	19-Sep-2022
			Asbest	os Lab:	NEW-ASB
Determinand	Accred.	SOP	Units	LOD	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-36636-1

Initial Date of Issue: 11-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Francy

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB APR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 26-Sep-2022

Order No.: Date Instructed: 29-Sep-2022

No. of Samples: 2

Turnaround (Wkdays): 7 Results Due: 07-Oct-2022

Date Approved: 11-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB APR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest J	ob No.:	22-36636	22-36636
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1512924	1512926
			Client Sam	1	1	
			Sample Lo		WP1_BH01	WP1_BH01
			Sampl	е Туре:	SOIL	SOIL
			Top De	oth (m):	1	2
			Date Sa	ampled:	22-Sep-2022	22-Sep-2022
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	9.2	3.1
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010
рН	U	2010		4.0	8.7	9.0
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.021
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	6.8	6.5
Barium	U	2455	mg/kg	0	24	45
Beryllium	U	2455	mg/kg	0.5	< 0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	1.2	0.72
Chromium	U	2455	mg/kg	0.5	9.0	11
Molybdenum	U	2455	mg/kg	0.5	1.7	1.4
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	18	11
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	27	18
Lead	U	2455	mg/kg	0.50	19	13
Selenium	U	2455	mg/kg	0.25	0.72	1.1
Zinc	U	2455	mg/kg	0.50	58	41
Chromium (Trivalent)	N	2490	mg/kg	1.0	9.0	11
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.47	0.52
Total Organic Carbon	U	2625	%	0.20	0.27	0.30
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0

Project: 21-1443E DUB APR Onshore Site Investigations

Client: Causeway Geotech Ltd	: Causeway Geotech Ltd Chemtest Job No.						
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1512924	1512926	
			lient Sam	1	1		
			Sample Lo		WP1_BH01	WP1_BH01	
				е Туре:	SOIL	SOIL	
			Top Dep		1	2	
			Date Sa	ampled:	22-Sep-2022	22-Sep-2022	
			Asbest	os Lab:	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	

Results - 2 Stage WAC

Pro	ject:	21-1443E	DUB AP	R Onshore	Site Investi	gations

Project: 21-1443E DUB APR Onsh	nore Site investigation	<u>1S</u>							
Chemtest Job No:	22-36636						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1512924							Limits	
Sample Ref:								Stable, Non-	
Sample ID:	1							reactive	
Sample Location:	WP1_BH01							hazardous	Hazardous
Top Depth(m):	1						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	22-Sep-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.27	3	5	6
Loss On Ignition	2610	U	%			2.0			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		-
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				8.7		>6	-
Acid Neutralisation Capacity	2015	Ν	mol/kg			0.020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values for compliance leaching		
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0004	0.0003	0.0007	0.0029	0.5	2	25
Barium	1455	U	< 0.005	< 0.005	< 0.0005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0008	< 0.0005	0.0016	0.0007	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0054	0.0028	0.011	0.030	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	0.0008	< 0.0005	0.0015	0.0006	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	3.7	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.37	0.20	< 1.0	2.1	10	150	500
Sulphate	1220	U	5.9	1.1	12	15	1000	20000	50000
Total Dissolved Solids	1020	N	1100	70	2200	1500	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	4.7	6.4	< 50	63	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	9.2

Leachate Test Information						
Leachant volume 1st extract/l	0.332					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.139					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-37039-1

Initial Date of Issue: 12-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCracken

Stephen McCracl Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 28-Sep-2022

Order No.: Date Instructed: 30-Sep-2022

No. of Samples: 4

Turnaround (Wkdays): 7 Results Due: 10-Oct-2022

Date Approved: 12-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-37039	22-37039	22-37039
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1514516	1514518	1514523
Order No.:		Client Sample Ref.:			1	3	2
		Sample		ocation:	WP1_BH06	WP1_BH06	WP1_BH02
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.5	1.5	1.0
			Date Sa	ampled:	26-Sep-2022	26-Sep-2022	26-Sep-2022
		Asbestos Lab:		DURHAM	DURHAM	DURHAM	
Determinand	Accred. SOP Units LOD						
ACM Type	U	2192		N/A	-	-	-
A 1	1	0400		21/2	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification	U	2192		N/A	Detected	Detected	Detected
Moisture	N	2030	%	0.020	8.2	7.2	5.9
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010
рН	U	2010		4.0	9.0	9.1	9.0
Boron (Hot Water Soluble)	Ü	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	Ü	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Arsenic	Ü	2455	mg/kg	0.5	8.8	5.5	13
Barium	U	2455	mg/kg	0.0	36	20	23
Beryllium	U	2455	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.63	0.85	0.98
Chromium	U	2455	mg/kg	0.10	13	7.1	8.7
Molybdenum	U	2455	mg/kg	0.5	0.9	1.5	0.8
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	20	11	12
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	19	19	16
Lead	U	2455	mg/kg	0.50	15	12	14
Selenium	U	2455	mg/kg	0.25	0.57	2.2	0.63
Zinc	U	2455		0.50	48	44	55
Chromium (Trivalent)	N	2490	mg/kg mg/kg	1.0	13	7.1	8.7
Chromium (Trivalent) Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	mg/kg %	0.50	1.0	< 0.40	< 0.50
·	U				_		
Total Organic Carbon	N	2625	% ma/ka	0.20	0.59	< 0.20	< 0.20
Aliphatic TPH > C5-C6		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Chemtest Job No.:				22-37039	22-37039
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1514516	1514518	1514523
Order No.:		CI	ient Samp	le Ref.:	1	3	2
			Sample Lo	ocation:	WP1_BH06	WP1_BH06	WP1_BH02
		Sample Type:				SOIL	SOIL
			Top De	oth (m):	0.5	1.5	1.0
			Date Sa	ampled:	26-Sep-2022	26-Sep-2022	26-Sep-2022
		Asbestos Lab:		DURHAM	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	0.13	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	0.13	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Results - 2 Stage WAC

Project:	21-1443E	DUB ARR	Onshore	Site Investig	<u>ations</u>

Project: 21-1443E DUB ARR Onsi	nore Site investigation	<u>1S</u>							
Chemtest Job No:	22-37039						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1514516							Limits	
Sample Ref:	1							Stable, Non-	
Sample ID:								reactive	
Sample Location:	WP1_BH06							hazardous	Hazardous
Top Depth(m):	0.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	26-Sep-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.59	3	5	6
Loss On Ignition	2610	U	%			1.8			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		-
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				9.0		>6	-
Acid Neutralisation Capacity	2015	Ν	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values for compliance leaching		
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0008	0.0009	0.0015	0.0088	0.5	2	25
Barium	1455	U	0.023	0.008	0.046	0.095	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0026	0.0026	0.0052	0.026	0.5	10	70
Copper	1455	U	0.0032	0.0027	0.0065	0.0030	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0048	0.0049	0.0096	0.049	0.5	10	30
Nickel	1455	U	0.0020	0.0017	0.0039	0.017	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0005	< 0.0005	0.0011	< 0.0005	0.06	0.7	5
Selenium	1455	U	0.0017	0.0010	0.0033	0.011	0.1	0.5	7
Zinc	1455	U	0.004	0.003	0.007	0.032	4	50	200
Chloride	1220	U	3.6	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.46	0.37	< 1.0	3.8	10	150	500
Sulphate	1220	U	23	3.6	46	54	1000	20000	50000
Total Dissolved Solids	1020	N	190	86	380	950	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.0	3.3	< 50	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.175		
Moisture (%)	8.2		

Leachate Test Information					
Leachant volume 1st extract/l	0.334				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.163				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - 2 Stage WAC

<u>Pro</u>	ject:	21-1443	<u>E DUB A</u>	RR Onsh	nore Site	Investiga	<u>ations</u>

Project: 21-1443E DUB ARR Onsi	nore Site investigation	<u>15</u>									
Chemtest Job No:							LandfIII Waste Acceptance Criteria				
Chemtest Sample ID:	ple ID: 1514522					Limits					
Sample Ref:	1							Stable, Non-			
Sample ID:								reactive			
Sample Location:	WP1_BH02							hazardous	Hazardous		
Top Depth(m):	0.5						Inert Waste	waste in non-	Waste		
Bottom Depth(m):							Landfill	hazardous	Landfill		
Sampling Date:	26-Sep-2022							Landfill			
Determinand	SOP	Accred.	Units								
Total Organic Carbon	2625	U	%			1.0	3	5	6		
Loss On Ignition	2610	U	%			1.9			10		
Total BTEX	2760	U	mg/kg			< 0.010	6				
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1				
TPH Total WAC	2670	U	mg/kg			< 10	500				
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100				
рН	2010	U				8.9		>6			
Acid Neutralisation Capacity	2015	N	mol/kg			< 0.0020		To evaluate	To evaluate		
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values for compliance leaching test				
			mg/l	mg/l	mg/kg	mg/kg 10:1	using BS EN 12457 at L/S 10 I/kg				
Arsenic	1455	U	0.0008	0.0017	0.0015	0.016	0.5	2	25		
Barium	1455	U	0.016	0.007	0.032	0.077	20	100	300		
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5		
Chromium	1455	U	0.0034	0.0032	0.0067	0.032	0.5	10	70		
Copper	1455	U	0.0023	0.0027	0.0046	0.0026	2	50	100		
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2		
Molybdenum	1455	U	0.0045	0.0029	0.0089	0.031	0.5	10	30		
Nickel	1455	U	0.0015	0.0022	0.0029	0.021	0.4	10	40		
Lead	1455	U	< 0.0005	0.0011	< 0.0005	0.0097	0.5	10	50		
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5		
Selenium	1455	U	0.0012	< 0.0005	0.0024	0.0013	0.1	0.5	7		
Zinc	1455	U	< 0.003	0.005	< 0.003	0.046	4	50	200		
Chloride	1220	U	3.3	< 1.0	< 10	< 10	800	15000	25000		
Fluoride	1220	U	0.45	0.27	< 1.0	2.9	10	150	500		
Sulphate	1220	U	25	2.9	50	54	1000	20000	50000		
Total Dissolved Solids	1020	N	170	68	350	800	4000	60000	100000		
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-		
Dissolved Organic Carbon	1610	U	3.2	2.8	< 50	< 50	500	800	1000		

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	6.1			

Leachate Test Information					
Leachant volume 1st extract/l	0.339				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.197				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-37229-1

Initial Date of Issue: 12-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen McCrack

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigation

Quotation No.: Q22-28722 Date Received: 29-Sep-2022

Order No.: Date Instructed: 30-Sep-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 10-Oct-2022

Date Approved: 12-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-37229	22-37229	22-37229
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1515444	1515446	1515448
Order No.:		CI	ient Samp	le Ref.:	6	4	9
			Sample Lo	ocation:	WP1_BH02	WP1_BH10	WP1_BH10
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	2.50	1.00	3.00
			Date Sa	ampled:	26-Sep-2022	27-Sep-2022	27-Sep-2022
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	-	-	-
A 1	1	0400		N 1/0	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification	U	2192		N/A	Detected	Detected	Detected
Moisture	N	2030	%	0.020	6.0	5.5	10
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010
рН	U	2010		4.0	9.2	8.5	8.9
Boron (Hot Water Soluble)	Ü	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	Ü	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	1.5	< 0.50
Arsenic	Ü	2455	mg/kg	0.5	8.6	8.4	8.2
Barium	U	2455	mg/kg	0.0	20	32	31
Beryllium	U	2455	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.61	1.5	1.7
Chromium	U	2455	mg/kg	0.10	8.2	8.9	10
Molybdenum	U	2455	mg/kg	0.5	0.7	1.1	2.3
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	11	13	25
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	0.06
Nickel	U	2455	mg/kg	0.50	13	17	35
Lead	U	2455	mg/kg	0.50	9.3	11	12
Selenium	U	2455	mg/kg	0.25	0.46	0.59	0.94
Zinc	U	2455		0.50	39	60	71
Chromium (Trivalent)	N	2490	mg/kg mg/kg	1.0	8.2	8.9	10
Chromium (Trivalent) Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	mg/kg %	0.40	0.71	0.91	0.43
·	U				-		
Total Organic Carbon	N	2625	% ma/ka	0.20	0.41	0.53	0.25
Aliphatic TPH > C5-C6		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C6-C8	N U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	_	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigation

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-37229	22-37229	22-37229
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1515444	1515446	1515448
Order No.:		CI	ient Samp	le Ref.:	6	4	9
		Sample Location:			WP1_BH02	WP1_BH10	WP1_BH10
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	2.50	1.00	3.00
			Date Sa	ampled:	26-Sep-2022	27-Sep-2022	27-Sep-2022
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Results - 2 Stage WAC

Pro	ject:	21-1443E	DUB	ARR	Onshore	Site	Investig	ation

Project: 21-1443E DUB ARR Onsi	nore Site investigation	<u>l</u>							
Chemtest Job No:	22-37229						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1515446							Limits	
Sample Ref:	4							Stable, Non-	
Sample ID:								reactive	
Sample Location:	WP1_BH10							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	27-Sep-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.53	3	5	6
Loss On Ignition	2610	U	%			1.3			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	U				8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0005	0.0002	0.0009	0.0027	0.5	2	25
Barium	1455	U	0.013	< 0.005	0.026	0.015	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0032	0.0036	0.0065	0.036	0.5	10	70
Copper	1455	U	0.0020	0.0019	0.0040	0.0023	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0015	0.0034	0.0030	0.032	0.5	10	30
Nickel	1455	U	0.0013	0.0015	0.0025	0.014	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	0.0013	< 0.0005	0.0025	0.0015	0.1	0.5	7
Zinc	1455	U	0.003	0.003	0.005	0.026	4	50	200
Chloride	1220	U	4.1	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.31	0.24	< 1.0	2.5	10	150	500
Sulphate	1220	U	22	2.8	44	51	1000	20000	50000
Total Dissolved Solids	1020	N	160	71	320	820	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	3.2	2.6	< 50	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	5.5				

Leachate Test Information						
Leachant volume 1st extract/l	0.340					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.206					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-37976-1

Initial Date of Issue: 18-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCracken

Stephen Franey
Stephen McCrack
Stephen Watson
Stuart Abraham
Thomas McAlli

Project 21-1443E DUB AEE onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 05-Oct-2022

Order No.: Date Instructed: 06-Oct-2022

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 14-Oct-2022

Date Approved: 18-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Leachate

Project: 21-1443E DUB AEE onshore Site Investigations

Client: Causeway Geotech Ltd			Che	ob No.:	22-37976	22-37976	
Quotation No.: Q22-28722		(Chemte	ple ID.:	1518775	1518788	
Order No.:				nt Samp		6	14
			Sa	ample Lo	ocation:	WP1_BH04	WP1_BH08
				Sampl	e Type:	SOIL	SOIL
				Top Dep	` '	1.0	1.5
				Date Sa		29-Sep-2022	01-Oct-2022
Determinand	Accred.	SOP	Туре	Units	LOD		
рН	U	1010	10:1		N/A	8.7	9.2
Chloride	U	1220	10:1	mg/l	1.0	< 1.0	< 1.0
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	< 0.050	< 0.050
Sulphate	U	1220	10:1	mg/l	1.0	3.1	< 1.0
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	0.060
Sulphide	U	1325	10:1	mg/l	0.050	< 0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	13	5.2
Hardness	U	1415	10:1	mg/l	15	36	< 15
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	4.4	0.76
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	< 10	< 10
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.11	< 0.11	< 0.11
Chromium (Dissolved)	U	1455	10:1	μg/l	0.50	2.1	< 0.50
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	5.9	< 0.50
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05	< 0.05
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	4.2	< 0.50
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	2.5	< 0.50
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	0.80	< 0.50
Vanadium (Dissolved)	U	1455	10:1	μg/l	0.50	4.0	< 0.50
Zinc (Dissolved)	U	1455	10:1	μg/l	2.5	15	< 2.5
Zinc (Total)	N	1455	10:1	μg/l	2.5	15	< 2.5
Chromium (Hexavalent)	U	1490	10:1	μg/l	20	< 20	< 20
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030	< 0.030

Project: 21-1443E DUB AEE onshore Site Investigations

Client: Causeway Geotech Ltd			emtest J		22-37976	22-37976	22-37976	22-37976	22-37976	22-37976
Quotation No.: Q22-28722			test Sam		1518775	1518778	1518780	1518783	1518786	1518788
Order No.:		CI	ient Samp	le Ref.:	6	10	22	27	12	14
			Sample Lo		WP1_BH04	WP1_BH04	WP1_BH03	WP1_BH03	WP1_BH08	WP1_BH0
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	1.0	3.0	0.5	3.0	0.5	1.5
			Date Sa	ampled:	29-Sep-2022	29-Sep-2022	01-Oct-2022	01-Oct-2022	01-Oct-2022	01-Oct-202
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	1	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbesto Detected				
Moisture	N	2030	%	0.020	11	8.0	12	11	9.5	3.3
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
pH	U	2010		4.0	8.6	8.6	8.7	8.7	8.5	8.2
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40	1.1	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.059	0.027
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.95	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.60
Arsenic	U	2455	mg/kg	0.5	11	12	9.1	13	13	28
Barium	U	2455	mg/kg	0	27	27	30	29	460	56
Beryllium	U	2455	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.86	0.93	0.73	0.98	2.9	0.91
Chromium	Ü	2455	mg/kg	0.5	13	12	22	15	31	16
Molybdenum	Ü	2455	mg/kg	0.5	2.3	2.8	1.8	3.5	9.5	3.4
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	53	< 2.0
Copper	U	2455	mg/kg	0.50	22	24	16	26	810	25
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.7	0.06
Nickel	U	2455	mg/kg	0.50	25	26	22	28	32	27
Lead	U	2455	mg/kg	0.50	16	15	11	18	1200	21
Selenium	Ü	2455	mg/kg	0.25	1.2	1.5	0.86	1.4	0.36	2.8
Zinc	Ü	2455	mg/kg	0.50	47	41	36	47	750	44
Chromium (Trivalent)	N	2490	mg/kg	1.0	13	12	22	15	31	16
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.79	0.82	4.3	0.98	1.9	1.2
Total Organic Carbon	U	2625	%	0.20	0.46	0.48	2.5	0.57	1.1	0.67
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: 21-1443E DUB AEE onshore Site Investigations

Quotation No.: Q22-28722 Order No.:		CI	test Sam ent Samp		1518775	1518778	1518780	1518783	1518786	1518788
Order No.:			ent Samn					1010100	1010100	1010100
					6	10	22	27	12	14
		,	Sample Lo	ocation:	WP1_BH04	WP1_BH04	WP1_BH03	WP1_BH03	WP1_BH08	WP1_BH08
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	1.0	3.0	0.5	3.0	0.5	1.5
			Date Sa	ampled:	29-Sep-2022	29-Sep-2022	01-Oct-2022	01-Oct-2022	01-Oct-2022	01-Oct-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.0	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.38	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	0.22	0.19	< 0.10	< 0.10	3.3	< 0.10
Pyrene	U	2800	mg/kg	0.10	0.29	0.16	< 0.10	< 0.10	2.8	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.0	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.1	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	3.1	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.1	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.6	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.9	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.38	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.9	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	24	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

SOP	Title	Parameters included	Method summary
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-38435-1

Initial Date of Issue: 21-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 07-Oct-2022

Order No.: Date Instructed: 10-Oct-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 18-Oct-2022

Date Approved: 21-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	nemtest Jo	ob No.:	22-38435	22-38435	22-38435
Quotation No.: Q22-28722		Chemtest Sample ID.:			1520937	1520938	1520941
		(Client Sam	ple ID.:	3	1	1
			Sample Lo		WP2_TP01	WP2_TP03	WP2_TP04
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	1.5	0.5	0.5
			Date Sa	ampled:	03-Oct-2022	03-Oct-2022	03-Oct-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-	-	-
		0400		21/2	No Asbestos	No Asbestos	No Asbesto
Asbestos Identification	U	2192		N/A	Detected	Detected	Detected
Moisture	N	2030	%	0.020	13	7.3	6.6
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010
рН	U	2010	74	4.0	7.7	9.0	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.40	0.023	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.017	< 0.023	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	9.0	5.5	11
Barium	U	2455	mg/kg	0.5	42	49	42
Beryllium	U	2455	mg/kg	0.5	0.7	< 0.5	0.6
Cadmium	U	2455	U U	0.10	0.76	0.46	0.51
Chromium	U	2455	mg/kg mg/kg	0.10	12	11	20
Molybdenum	U	2455		0.5	2.3	0.5	0.9
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0
	U	2455	mg/kg	0.50	12	11	15
Copper	U	2455	mg/kg				
Mercury Nickel	U	2455	mg/kg	0.05	< 0.05 16	< 0.05 15	< 0.05 20
	U	2455	mg/kg	0.50	23	14	19
Lead	U	2455	mg/kg			* *	
Selenium	U		mg/kg	0.25	0.66	0.36	0.52
Zinc	N	2455	mg/kg	0.50	55 12	39	65 20
Chromium (Trivalent)		2490	mg/kg	1.0		11	_
Chromium (Hexavalent)	N U	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter		2625	%	0.40	1.7	1.1	1.9
Total Organic Carbon	U	2625	%	0.20	1.0	0.63	1.1
Aliphatic TPH > C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest J	ob No.:	22-38435	22-38435	22-38435
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1520937	1520938	1520941
		C	lient Sam	ple ID.:	3	1	1
		;	Sample Lo		WP2_TP01	WP2_TP03	WP2_TP04
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top De	oth (m):	1.5	0.5	0.5
			Date Sa	ampled:	03-Oct-2022	03-Oct-2022	03-Oct-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	0.14	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	0.13	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Results - 2 Stage WAC

<u>Pro</u>	ject:	21-1443	<u> </u>	ARR Ons	<u>hore Site</u>	Investiga	<u>ations</u>

Project: 21-1443E DUB ARR Onsi	nore Site investigation	<u>1S</u>							
Chemtest Job No:	22-38435						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1520937							Limits	
Sample Ref:								Stable, Non-	
Sample ID:	3							reactive	
Sample Location:	WP2_TP01							hazardous	Hazardous
Top Depth(m):	1.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	03-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			1.0	3	5	6
Loss On Ignition	2610	U	%			3.3			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		1
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				7.7		>6	1
Acid Neutralisation Capacity	2015	N	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0039	0.0004	0.0077	0.0067	0.5	2	25
Barium	1455	U	0.020	< 0.005	0.040	0.018	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0050	< 0.0005	0.010	0.0043	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0077	0.0031	0.015	0.035	0.5	10	30
Nickel	1455	U	0.0024	< 0.0005	0.0047	0.0021	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0025	< 0.0005	0.0050	0.0022	0.06	0.7	5
Selenium	1455	U	0.0022	< 0.0005	0.0044	0.0019	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.5	1.0	< 10	10	800	15000	25000
Fluoride	1220	U	0.41	0.35	< 1.0	3.5	10	150	500
Sulphate	1220	U	28	5.2	55	72	1000	20000	50000
Total Dissolved Solids	1020	N	150	89	310	950	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	16	9.2	< 50	97	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	13			

Leachate Test Information					
Leachant volume 1st extract/l	0.323				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.151				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - 2 Stage WAC

Pro	ect:	21-	1443E	DUB	ARR	Onshore	Site	<u>Investi</u>	ations

Project: 21-1443E DUB ARR Onsi	nore Site investigation	<u>ns</u>							
Chemtest Job No:	22-38435						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1520941							Limits	
Sample Ref:								Stable, Non-	
Sample ID:	1							reactive	
Sample Location:	WP2_TP04							hazardous	Hazardous
Top Depth(m):	0.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	03-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			1.1	3	5	6
Loss On Ignition	2610	U	%			1.6			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
рН	2010	U				8.7		>6	-
Acid Neutralisation Capacity	2015	Ν	mol/kg			0.020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0077	0.0031	0.015	0.035	0.5	2	25
Barium	1455	U	0.008	0.010	0.016	0.098	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0050	0.0072	0.0099	0.071	0.5	10	70
Copper	1455	U	0.0055	0.021	0.011	0.0050	2	50	100
Mercury	1455	U	< 0.00005	0.00007	< 0.00005	0.00063	0.01	0.2	2
Molybdenum	1455	U	0.016	0.0070	0.032	0.077	0.5	10	30
Nickel	1455	U	0.0013	0.0030	0.0025	0.029	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0018	0.0067	0.0035	0.063	0.06	0.7	5
Selenium	1455	U	0.0028	0.0026	0.0056	0.026	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	9.2	5.0	18	53	800	15000	25000
Fluoride	1220	U	0.66	0.21	1.3	2.5	10	150	500
Sulphate	1220	U	47	59	94	580	1000	20000	50000
Total Dissolved Solids	1020	N	160	250	320	2400	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	11	8.5	< 50	87	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	6.6			

Leachate Test Information					
Leachant volume 1st extract/l	0.338				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.140				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-38437-1

Initial Date of Issue: 25-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Francy

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli

Project 22-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 07-Oct-2022

Order No.: Date Instructed: 11-Oct-2022

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 19-Oct-2022

Date Approved: 25-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Leachate

Project: 22-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd			Chei	ntest Jo	ob No.:	22-38437
Quotation No.: Q22-28722		(Chemte	st Sam	ple ID.:	1520946
Order No.:			Clier	nt Samp	le Ref.:	2
			Sa	ample Lo	cation:	WP1_TP05
					е Туре:	SOIL
				Top Dep	oth (m):	1.0
				Date Sa	ampled:	05-Oct-2022
Determinand	Accred.	SOP	Type	Units	LOD	
рН	U	1010	10:1		N/A	10.0
Chloride	U	1220	10:1	mg/l	1.0	6.3
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	< 0.050
Sulphate	U	1220	10:1	mg/l	1.0	19
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050
Sulphide	U	1325	10:1	mg/l	0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	28
Hardness	U	1415	10:1	mg/l	15	71
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	8.5
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	37
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.11	< 0.11
Chromium (Dissolved)	U	1455	10:1	μg/l	0.50	1.9
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	10
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	1.2
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	1.5
Vanadium (Dissolved)	U	1455	10:1	μg/l	0.50	15
Zinc (Dissolved)	U	1455	10:1	μg/l	2.5	< 2.5
Zinc (Total)	N	1455	10:1	μg/l	2.5	< 2.5
Chromium (Hexavalent)	U	1490	10:1	μg/l	20	< 20
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030

Project: 22-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd			emtest J		22-38437	22-38437	22-38437	22-38437	22-38437	22-38437
Quotation No.: Q22-28722			test Sam	•	1520946	1520947	1520948	1520950	1520952	1520953
Order No.:		CI	ient Samp	le Ref.:	2	3	1	3	2	3
			Sample Lo	ocation:	WP1_TP05	WP1_TP05	WP1_TP06	WP1_TP06	WP1_TP10	WP1_TP10
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	1.0	1.5	0.5	1.5	1.0	1.5
			Date Sa	ampled:	05-Oct-2022	05-Oct-2022	05-Oct-2022	05-Oct-2022	05-Oct-2022	05-Oct-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected					
Moisture	N	2030	%	0.020	9.0	17	8.0	16	7.7	9.4
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
pH	U	2010	·	4.0	8.3	8.3	8.3	8.8	8.8	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.88	< 0.40	0.48	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.061	0.020	0.023	< 0.010	0.025	0.038
Chloride (Water Soluble)	U	2220	g/l	0.010	0.016	0.015	0.016	< 0.010	< 0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	7.5	7.2	7.2	9.4	10	7.6
Barium	U	2455	mg/kg	0	42	20	22	18	34	29
Beryllium	U	2455	mg/kg	0.5	0.7	< 0.5	< 0.5	< 0.5	0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.90	0.69	0.73	0.91	0.86	0.70
Chromium	U	2455	mg/kg	0.5	8.2	6.9	7.2	7.2	10	7.8
Molybdenum	U	2455	mg/kg	0.5	1.2	0.8	0.7	0.8	1.4	1.0
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	16	8.9	9.2	9.0	14	12
Mercury	U	2455	mg/kg	0.05	0.15	< 0.05	< 0.05	< 0.05	0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	17	14	14	15	20	17
Lead	U	2455	mg/kg	0.50	43	12	13	9.9	21	22
Selenium	U	2455	mg/kg	0.25	0.74	0.35	0.47	0.36	0.69	0.65
Zinc	U	2455	mg/kg	0.50	58	38	38	39	52	47
Chromium (Trivalent)	N	2490	mg/kg	1.0	8.2	6.9	7.2	7.2	10	7.8
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	2.8	0.71	1.6	< 0.40	0.64	0.45
Total Organic Carbon	U	2625	%	0.20	1.6	0.41	0.91	< 0.20	0.37	0.26
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: 22-1443E DUB ARR Onshore Site Investigations

Order No.: Client Sample Ref.: 2 3 1 3 2 Sample Location: Sample Location: WP1_TP05 WP1_TP05 WP1_TP05 WP1_TP06 WP1_TP00	Client: Causeway Geotech Ltd			emtest J		22-38437	22-38437	22-38437	22-38437	22-38437	22-38437
Sample Location: WP1_TP05 WP1_TP05 WP1_TP06 WP1_TP06 WP1_TP06 SOIL Quotation No.: Q22-28722					1520946	1520947	1520948	1520950	1520952	1520953	
Sample Type: SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL Top Depth (m): 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.0 1.5 0.5 1.5 1.5 1.0 1.5 0.5 1.5 1.5 1.0 1.5 0.5 1.5 1.5 1.0	Order No.:		CI	ient Samp	le Ref.:	2	3	1	3	2	3
Top Depth (m):			;	Sample Lo	ocation:		WP1_TP05	WP1_TP06		WP1_TP10	WP1_TP10
Date Sampled: O5-Oct-2022 O5-Oct-202 O5-Oct-202 O5-Oct-202 O5-Oct-202 O5-Oct-202 O5-Oct-202 O5				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Asbestos Lab. DURHAM D				Top De	pth (m):	1.0	1.5	0.5	1.5	1.0	1.5
Determinand				Date Sa	ampled:		05-Oct-2022	05-Oct-2022		05-Oct-2022	05-Oct-2022
Aromatic TPH > C7-C8 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 </td <td></td> <td></td> <td></td> <td>Asbest</td> <td>os Lab:</td> <td>DURHAM</td> <td>DURHAM</td> <td>DURHAM</td> <td>DURHAM</td> <td>DURHAM</td> <td>DURHAM</td>				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Aromatic TPH > C8-C10 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		Accred.	SOP	Units	LOD						
Aromatic TPH > C10 C12 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C16-C21 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C21-C35 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C35-C44 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Petroleum Hydrocarbons N 2680 mg/kg 10.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene U 2760 μg/kg 1.0 <1.0 <1.0 <1.0 3.9 <1.0	Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene U 2760 μg/kg 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10
Ethylbenzene U 2760 µg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <th< td=""><td>Benzene</td><td>U</td><td>2760</td><td>μg/kg</td><td>1.0</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td>3.9</td><td>< 1.0</td><td>< 1.0</td></th<>	Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	3.9	< 1.0	< 1.0
m & p-Xylene U 2760 μg/kg 1.0 < 1.0 < 1.0 < 2.4 < 1.0 o-Xylene U 2760 μg/kg 1.0 < 1.0	Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	1.6	5.9	< 1.0	< 1.0
o-Xylene U 2760 µg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1	Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether U 2760 μg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10 < 2.10	m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	2.4	< 1.0	< 1.0
Naphthalene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Acenaphthylene N 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <td>Methyl Tert-Butyl Ether</td> <td>U</td> <td>2760</td> <td>μg/kg</td> <td>1.0</td> <td>< 1.0</td> <td>< 1.0</td> <td>< 1.0</td> <td>< 1.0</td> <td>< 1.0</td> <td>< 1.0</td>	Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Acenaphthene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene U 2800 mg/kg 0.10 < 0.10 < 0.10 0.27 < 0.10 0.26 Pyrene U 2800 mg/kg 0.10 < 0.10	Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene U 2800 mg/kg 0.10 < 0.10 < 0.10 0.18 < 0.10 0.24 Benzo[a]anthracene U 2800 mg/kg 0.10 < 0.10	Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1	Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	0.27	< 0.10	0.26	0.23
Chrysene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 </td <td>Pyrene</td> <td>U</td> <td>2800</td> <td>mg/kg</td> <td>0.10</td> <td>< 0.10</td> <td>< 0.10</td> <td>0.18</td> <td>< 0.10</td> <td>0.24</td> <td>0.26</td>	Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	0.18	< 0.10	0.24	0.26
Benzo[b]fluoranthene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene U 2800 mg/kg 0.10 or 0.	Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene U 2800 mg/kg 0.10 occidence < 0.10 o	Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene N 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]pervlene U 2800 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	Total Phenols	U	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10

Results - 2 Stage WAC

<u>Project:</u>	22-1443E	DUB ARR	Onshore Site	<u> Investigations</u>	
					-

Project: 22-1443E DUB ARR Onsi	nore site investigation	13							
Chemtest Job No:	22-38437						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1520947							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:								reactive	
Sample Location:	WP1_TP05							hazardous	Hazardous
Top Depth(m):	1.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	05-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.41	3	5	6
Loss On Ignition	2610	U	%			2.2			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	U				8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.033		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0027	0.0033	0.0054	0.032	0.5	2	25
Barium	1455	U	0.027	0.011	0.054	0.14	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	0.0006	< 0.0005	0.0049	0.5	10	70
Copper	1455	U	0.0041	0.0024	0.0081	0.0058	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.20	0.060	0.38	0.79	0.5	10	30
Nickel	1455	U	0.0011	< 0.0005	0.0021	0.0015	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0033	0.0032	0.0064	0.032	0.06	0.7	5
Selenium	1455	U	0.0033	0.0017	0.0064	0.019	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	13	1.2	26	28	800	15000	25000
Fluoride	1220	U	1.6	0.70	3.1	8.2	10	150	500
Sulphate	1220	U	110	15	210	280	1000	20000	50000
Total Dissolved Solids	1020	N	210	67	420	870	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.2	4.3	< 50	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	17				

Leachate Test Information						
Leachant volume 1st extract/l	0.315					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.245					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - 2 Stage WAC

<u>Proj</u>	ect:	22-1443E	DUB A	ARR	Onshore	Site	<u>Investiç</u>	ations

Project: 22-1443E DUB ARR Unshore	one miroongane.	.0							
Chemtest Job No:	22-38437						Landfill V	Vaste Acceptand	e Criteria
Chemtest Sample ID:	1520950							Limits	
Sample Ref:	3							Stable, Non-	
Sample ID:								reactive	
Sample Location:	WP1_TP06							hazardous	Hazardous
Top Depth(m):	1.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	05-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			< 0.20	3	5	6
Loss On Ignition	2610	U	%			1.1			10
Total BTEX	2760	U	mg/kg			0.012	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	U				8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.0090		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.012	0.012	0.024	0.12	0.5	2	25
Barium	1455	U	0.041	0.012	0.081	0.17	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0023	0.0020	0.0045	0.021	0.5	10	70
Copper	1455	U	0.028	0.0089	0.055	0.042	2	50	100
Mercury	1455	U	0.00014	0.00007	0.00028	0.00080	0.01	0.2	2
Molybdenum	1455	U	0.025	0.0078	0.049	0.10	0.5	10	30
Nickel	1455	U	0.0019	0.0008	0.0037	0.0094	0.4	10	40
Lead	1455	U	< 0.0005	0.0026	< 0.0005	0.022	0.5	10	50
Antimony	1455	U	0.0093	0.0026	0.018	0.036	0.06	0.7	5
Selenium	1455	U	0.0026	0.0012	0.0051	0.014	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	16	1.8	32	39	800	15000	25000
Fluoride	1220	U	0.93	0.26	1.8	3.6	10	150	500
Sulphate	1220	U	110	12	210	260	1000	20000	50000
Total Dissolved Solids	1020	N	210	64	410	850	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	10	6.1	< 50	67	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	16				

Leachate Test Information						
Leachant volume 1st extract/l	0.317					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.259					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	Н	pH Meter
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 22-38438-1

Initial Date of Issue: 23-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey
Stephen McCracken
Stephen Watson
Stuart Abraham
Thomas McAlli

Project 21-1443E DUB ARR Onshore Site

Investigations

Quotation No.: Q22-28722 Date Received: 07-Oct-2022

Order No.: Date Instructed: 11-Oct-2022

No. of Samples: 5

Turnaround (Wkdays): 7 Results Due: 19-Oct-2022

Date Approved: 23-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest J	ob No.:	22-38438	22-38438	22-38438	22-38438	22-38438
Quotation No.: Q22-28722	Chemtest Sample ID.: Client Sample ID.:			1520955	1520956	1520958	1520960	1520962	
				2	3	2	1	3	
	Sample Location:			WP1_TP03	WP1_TP03	WP1_TP04	WP1_TP11	WP1_TP1	
	Sample Type: Bottom Depth (m):			SOIL	SOIL	SOIL	SOIL	SOIL	
				1.0	1.5	1.0	0.5	1.5	
			Date Sa	ampled:	04-Oct-2022	04-Oct-2022	04-Oct-2022	04-Oct-2022	04-Oct-202
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTR
Determinand	Accred.	SOP	Units	LOD					
ACM Type	U	2192		N/A	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbesto Detected
Moisture	N	2030	%	0.020	7.7	8.6	7.7	13	9.7
Alkali Reserve	N		g NaOH eq		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
pH	U	2010		4.0	8.5	8.6	8.5	8.2	8.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.43	< 0.40	0.56	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	9.8	8.1	8.9	10	9.2
Barium	U	2455	mg/kg	0	35	28	38	46	24
Beryllium	U	2455	mg/kg	0.5	0.6	< 0.5	< 0.5	0.8	0.6
Cadmium	U	2455	mg/kg	0.10	1.2	0.77	0.85	1.1	1.3
Chromium	Ü	2455	mg/kg	0.5	11	8.1	7.9	8.8	10
Molybdenum	U	2455	mg/kg	0.5	1.5	1.0	0.9	1.2	1.7
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	15	11	11	11	16
Mercury	U	2455	mg/kg	0.05	0.05	< 0.05	0.05	0.06	< 0.05
Nickel	U	2455	mg/kg	0.50	23	16	15	18	28
Lead	U	2455	mg/kg	0.50	33	23	21	12	16
Selenium	U	2455	mg/kg	0.25	1.1	0.55	0.52	0.75	0.75
Zinc	U	2455	mg/kg	0.50	69	56	42	45	62
Chromium (Trivalent)	N	2490	mg/kg	1.0	11	8.1	7.9	8.8	10
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	3.4	1.5	3.3	1.0	0.62
Total Organic Carbon	U	2625	%	0.20	2.0	0.84	1.9	0.58	0.36
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:	22-38438	22-38438	22-38438	22-38438	22-38438
Quotation No.: Q22-28722	Chemtest Sample ID.: Client Sample ID.: Sample Location: Sample Type: Bottom Depth (m): Date Sampled:				1520955	1520956	1520958	1520960	1520962
				2	3	2	1	3	
				WP1_TP03	WP1_TP03	WP1_TP04	WP1_TP11	WP1_TP11	
				SOIL	SOIL	SOIL	SOIL	SOIL	
				1.0	1.5	1.0	0.5	1.5	
				04-Oct-2022	04-Oct-2022	04-Oct-2022	04-Oct-2022	04-Oct-2022	
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project: 21-1443E DUB ARR Ons	nore Site investigation	<u>1S</u>							
Chemtest Job No:	22-38438						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1520958						Limits		
Sample Ref:								Stable, Non-	
Sample ID:	2							reactive	
Sample Location:	WP1_TP04							hazardous	Hazardous
Top Depth(m):							Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0						Landfill	hazardous	Landfill
Sampling Date:	04-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			1.9	3	5	6
Loss On Ignition	2610	U	%			3.7			10
Total BTEX	2760	U	mg/kg			< 0.010	6		-
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
pH	2010	U				8.5		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.0050		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0029	0.0013	0.0057	0.015	0.5	2	25
Barium	1455	U	0.041	0.036	0.082	0.37	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0021	0.0009	0.0042	0.010	0.5	10	70
Copper	1455	U	0.0033	0.0013	0.0066	0.0041	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.0056	0.023	0.064	0.5	10	30
Nickel	1455	U	0.0011	< 0.0005	0.0022	0.0014	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0020	0.0010	0.0041	0.012	0.06	0.7	5
Selenium	1455	U	0.0020	0.0015	0.0040	0.015	0.1	0.5	7
Zinc	1455	U	0.006	< 0.003	0.013	0.008	4	50	200
Chloride	1220	U	13	< 1.0	26	16	800	15000	25000
Fluoride	1220	U	0.27	0.28	< 1.0	2.8	10	150	500
Sulphate	1220	U	1500	510	3100	6400	1000	20000	50000
Total Dissolved Solids	1020	N	1400	630	2800	7300	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	9.2	3.6	< 50	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	7.7					

Leachate Test Information						
Leachant volume 1st extract/l	0.335					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.216					

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-38975-1

Initial Date of Issue: 26-Oct-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Alistair McQuat

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey
Stephen McCracken

Stephen McCracl Stephen Watson Stuart Abraham Thomas McAlli

Project 21-1443E Codling Wind Park - Poolbeg

Quotation No.: Q22-28722 Date Received: 12-Oct-2022

Order No.: Date Instructed: 13-Oct-2022

No. of Samples: 10

Turnaround (Wkdays): 10 Results Due: 26-Oct-2022

Date Approved: 26-Oct-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Leachate

Client: Causeway Geotech Ltd			Che	mtest J	ob No.:	22-38975	22-38975	22-38975
Quotation No.: Q22-28722			Chemte	st Sam	ple ID.:	1523407	1523409	1523415
			Sa	ample Lo		WP1 TP07	WP1 TP12	WP1 TP01
					е Туре:	SOIL	SOIL	SOIL
				Top De	oth (m):	1.00	0.50	0.50
				Date Sa		10-Oct-2022	10-Oct-2022	10-Oct-2022
Determinand	Accred.	SOP	Type	Units	_			
рН	U	1010	10:1		N/A	8.0	8.2	6.6
Chloride	U	1220	10:1	mg/l	1.0	< 1.0	< 1.0	< 1.0
Ammoniacal Nitrogen	U	1220	10:1	mg/l	0.050	0.071	0.49	< 0.050
Sulphate	U	1220	10:1	mg/l	1.0	< 1.0	21	< 1.0
Cyanide (Total)	U	1300	10:1	mg/l	0.050	0.060	0.050	0.050
Sulphide	U	1325	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	18	39	19
Hardness	U	1415	10:1	mg/l	15	48	110	50
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	0.59	1.6	0.56
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	< 10	20	< 10
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.11	< 0.11	< 0.11	< 0.11
Chromium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	< 0.50	< 0.50
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	1.6	2.6	0.96
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05	< 0.05	< 0.05
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	0.71	2.6	< 0.50
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	1.2	1.1
Vanadium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	0.81	< 0.50
Zinc (Dissolved)	U	1455	10:1	μg/l	2.5	22	22	< 2.5
Zinc (Total)	N	1455	10:1	μg/l	2.5	22	23	< 2.5
Chromium (Hexavalent)	U	1490	10:1	μg/l	20	< 20	< 20	< 20
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030	< 0.030	< 0.030

Client: Causeway Geotech Ltd			emtest Jo		22-38975	22-38975	22-38975	22-38975	22-38975	22-38975	22-38975	22-38975
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1523401	1523402	1523404	1523407	1523409	1523410	1523413	1523415
			Sample Lo	ocation:	WP1 TP13	WP1 TP13	WP1 TP08	WP1 TP07	WP1 TP12	WP1 TP12	WP1 TP09	WP1 TP01
			Sampl	е Туре:	SOIL							
			Top De	pth (m):	1.00	1.50	1.00	1.00	0.50	1.00	1.00	0.50
			Date Sa	ampled:	10-Oct-2022							
			Asbest	os Lab:	COVENTRY							
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected							
Moisture	N	2030	%	0.020	12	13	7.8	6.9	9.2	5.9	7.5	7.6
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
рН	U	2010		4.0	8.2	8.2	8.6	8.6	8.4	8.4	8.7	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	3.5	< 0.40	0.55	0.54	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.047	0.098	< 0.010	0.025
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.010	< 0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	10	7.7	8.4	9.7	8.8	8.7	5.4	6.1
Barium	U	2455	mg/kg	0	41	28	20	16	38	35	15	18
Beryllium	U	2455	mg/kg	0.5	0.6	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5
Cadmium	U	2455	mg/kg	0.10	1.0	0.76	0.77	0.62	0.91	0.73	0.97	1.2
Chromium	U	2455	mg/kg	0.5	10	9.0	8.8	6.8	8.9	8.2	5.8	6.3
Molybdenum	U	2455	mg/kg	0.5	1.3	0.8	1.1	1.0	1.3	1.2	1.1	1.2
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	15	8.8	12	10	16	14	11	12
Mercury	U	2455	mg/kg	0.05	0.05	< 0.05	< 0.05	< 0.05	0.06	0.06	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	19	12	21	16	19	17	17	19
Lead	U	2455	mg/kg	0.50	26	22	13	12	29	25	8.6	9.5
Selenium	U	2455	mg/kg	0.25	0.83	0.57	0.45	0.50	0.87	0.64	0.52	0.60
Zinc	U	2455	mg/kg	0.50	60	43	48	38	60	51	40	45
Chromium (Trivalent)	N	2490	mg/kg	1.0	10	9.0	8.7	6.8	8.9	8.2	5.8	6.3
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	4.5	3.0	0.92	1.2	2.1	2.1	1.3	0.64
Total Organic Carbon	U	2625	%	0.20	2.6	1.7	0.53	0.67	1.2	1.2	0.76	0.37
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
			J									

Client: Causeway Geotech Ltd			emtest J		22-38975	22-38975	22-38975	22-38975	22-38975	22-38975	22-38975	22-38975
Quotation No.: Q22-28722			test Sam		1523401	1523402	1523404	1523407	1523409	1523410	1523413	1523415
		5	Sample Lo	ocation:	WP1 TP13	WP1 TP13	WP1 TP08	WP1 TP07	WP1 TP12	WP1 TP12	WP1 TP09	WP1 TP01
		Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
			Top De		1.00	1.50	1.00	1.00	0.50	1.00	1.00	0.50
			Date Sa	ampled:	10-Oct-2022							
			Asbest	tos Lab:	COVENTRY							
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.33	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.39	0.56	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.29	0.47	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.33	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.21	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Causeway Geotech Ltd		Ch	emtest Jo	ob No.:		22-38975
Quotation No.: Q22-28722		Chem	test Sam	ple ID.:	1523418	1523419
			Sample Lo	ocation:	WP1 TP02	WP1 TP02
			Sampl	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	0.50	1.00
			Date Sa	ampled:	10-Oct-2022	10-Oct-2022
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	8.6	11
Alkali Reserve	N		g NaOH eq	0.010	< 0.010	< 0.010
pН	U	2010		4.0	8.7	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	1.8
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	6.9	9.5
Barium	U	2455	mg/kg	0	19	27
Beryllium	U	2455	mg/kg	0.5	< 0.5	0.6
Cadmium	U	2455	mg/kg	0.10	1.1	1.4
Chromium	U	2455	mg/kg	0.5	8.2	12
Molybdenum	U	2455	mg/kg	0.5	1.3	1.9
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	14	20
Mercury	U	2455	mg/kg	0.05	< 0.05	0.05
Nickel	U	2455	mg/kg	0.50	24	34
Lead	U	2455	mg/kg	0.50	12	17
Selenium	U	2455	mg/kg	0.25	0.54	0.73
Zinc	U	2455	mg/kg	0.50	50	72
Chromium (Trivalent)	N	2490	mg/kg	1.0	8.2	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.80	0.58
Total Organic Carbon	U	2625	%	0.20	0.47	0.34
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0

Project: 21-1443E DUB ARR Onshore Site Investigations

				ob No.:	22-38975	22-38975
Quotation No.: Q22-28722		Chemtest Sample ID.:			1523418	1523419
		;	Sample Lo		WP1 TP02	WP1 TP02
				е Туре:	SOIL	SOIL
			Top Dep		0.50	1.00
		Date Sampled:		10-Oct-2022	10-Oct-2022	
		Asbestos Lab:			COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10

Pro	ject:	21-1443E	DUB ARR	Onshore Site	Investigations

Project: 21-1443E DUB ARR Ons	nore Site investigation	115							
Chemtest Job No:	22-38975						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1523402								
Sample Ref: Sample ID:								Stable, Non- reactive	
Sample Location:	WP1 TP13 1.50						Inert Waste	hazardous waste in non-	Hazardous Waste
Top Depth(m):	1.50						Landfill	hazardous	Landfill
Bottom Depth(m):	10 Oct 2022						Landilli		Landilli
Sampling Date:	10-Oct-2022	A I	I					Landfill	
Determinand	SOP	Accred.	Units			4.7			•
Total Organic Carbon	2625	U	%			1.7	3	5	6
Loss On Ignition	2610	U	%			0.77			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	U				8.2		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.035		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	•
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	
Arsenic	1455	U	0.0011	0.0011	0.0021	0.011	0.5	2	25
Barium	1455	U	0.015	0.006	0.031	0.068	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0011	0.0010	0.010	0.5	10	70
Copper	1455	U	0.0029	0.0019	0.0058	0.0035	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0038	0.0037	0.0075	0.037	0.5	10	30
Nickel	1455	U	0.0013	0.0009	0.0026	0.0095	0.4	10	40
Lead	1455	U	< 0.0005	0.0005	< 0.0005	0.0047	0.5	10	50
Antimony	1455	U	0.0021	0.0014	0.0041	0.015	0.06	0.7	5
Selenium	1455	U	0.0026	0.0015	0.0052	0.016	0.1	0.5	7
Zinc	1455	U	0.011	0.012	0.022	0.12	4	50	200
Chloride	1220	U	1.8	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.34	0.30	< 1.0	3.0	10	150	500
Sulphate	1220	U	21	4.1	42	61	1000	20000	50000
Total Dissolved Solids	1020	N	250	200	490	2000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	12	17	< 50	160	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	13				

Leachate Test Information						
Leachant volume 1st extract/l	0.325					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.210					

Waste Acceptance Criteria

Proj	ect:	21-14	143E	DUB	ARR	Onshore	Site	Inves	stigations	3

Project: 21-1443E DUB ARR Ons	nore Site investigation	113							
Chemtest Job No:	22-38975						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1523410				Limits				
Sample Ref: Sample ID:								Stable, Non- reactive	
Sample Location:	WP1 TP12							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	10-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			1.2	3	5	6
Loss On Ignition	2610	U	%			8.0			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			2.5	100		
pH	2010	U				8.4		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg			0.025		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0049	0.0024	0.0098	0.026	0.5	2	25
Barium	1455	U	0.18	0.062	0.36	0.72	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0029	0.0025	0.0058	0.0025	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.039	0.024	0.079	0.25	0.5	10	30
Nickel	1455	U	0.0069	0.0034	0.014	0.037	0.4	10	40
Lead	1455	U	0.0005	< 0.0005	0.0010	< 0.0005	0.5	10	50
Antimony	1455	U	0.0042	0.0062	0.0083	0.060	0.06	0.7	5
Selenium	1455	U	0.0027	0.0018	0.0055	0.019	0.1	0.5	7
Zinc	1455	U	0.011	0.021	0.023	0.20	4	50	200
Chloride	1220	U	10	1.9	20	26	800	15000	25000
Fluoride	1220	U	0.33	0.36	< 1.0	3.6	10	150	500
Sulphate	1220	U	110	33	210	390	1000	20000	50000
Total Dissolved Solids	1020	N	410	240	810	2500	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	18	7.7	< 50	86	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	5.9				

Leachate Test Information						
Leachant volume 1st extract/l	0.339					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.152					

Waste Acceptance Criteria

Pro	ject:	21-1443E	DUB ARR	Onshore Site	Investigations

Project: 21-1443E DUB ARR Ons	<u>nore Site Investigatio</u>	ns							
Chemtest Job No: 22-38975							Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1523413				Limits				
Sample Ref:							Stable, Non-		
Sample ID:								reactive	
Sample Location:	WP1 TP09							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	10-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.76	3	5	6
Loss On Ignition	2610	U	%			3.8			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		-
TPH Total WAC	2670	U	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	Ν	mg/kg			< 2.0	100		1
рН	2010	U				8.7		>6	1
Acid Neutralisation Capacity	2015	Ν	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0003	0.0002	0.0006	0.0023	0.5	2	25
Barium	1455	U	0.013	< 0.005	0.027	0.015	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0008	< 0.0005	0.0017	0.0009	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.010	0.011	0.021	0.10	0.5	10	30
Nickel	1455	U	0.0006	< 0.0005	0.0012	0.0006	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0010	0.0007	0.0019	0.0071	0.06	0.7	5
Selenium	1455	U	0.0011	0.0008	0.0023	0.0085	0.1	0.5	7
Zinc	1455	U	0.010	0.010	0.020	0.10	4	50	200
Chloride	1220	U	3.4	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.25	0.21	< 1.0	2.1	10	150	500
Sulphate	1220	U	32	5.0	64	80	1000	20000	50000
Total Dissolved Solids	1020	N	150	76	290	840	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.9	5.1	< 50	52	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.175				
Moisture (%)	7.5				

Leachate Test Information						
Leachant volume 1st extract/l	0.336					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.192					

Waste Acceptance Criteria

Proj	ect:	21-144	13E DI	UB AR	R Onshor	e Site	Investi	gations

Project: 21-1443E DUB ARR Onsi	nore Site investigation	113							
Chemtest Job No:	22-38975						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1523419							Limits	
Sample Ref: Sample ID:								Stable, Non- reactive	
Sample Location:	WP1 TP02							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	10-Oct-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.34	3	5	6
Loss On Ignition	2610	U	%			8.5			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	U				8.7		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.0030		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0004	0.0003	0.0008	0.0035	0.5	2	25
Barium	1455	U	0.011	< 0.005	0.023	0.012	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0013	< 0.0005	0.0026	0.0014	0.5	10	70
Copper	1455	U	0.0013	0.0010	0.0026	0.0014	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0045	0.0052	0.0089	0.052	0.5	10	30
Nickel	1455	U	0.0006	< 0.0005	0.0013	0.0007	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0007	< 0.0005	0.0015	0.0008	0.06	0.7	5
Selenium	1455	U	0.0015	0.0010	0.0031	0.011	0.1	0.5	7
Zinc	1455	U	0.012	0.009	0.024	0.091	4	50	200
Chloride	1220	U	2.9	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.29	0.23	< 1.0	2.4	10	150	500
Sulphate	1220	U	23	3.8	46	59	1000	20000	50000
Total Dissolved Solids	1020	N	150	81	310	890	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.8	5.3	< 50	53	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	11			

Leachate Test Information				
Leachant volume 1st extract/l	0.329			
Leachant volume 2nd extract/l	1.400			
Eluant recovered from 1st extract/l	0.189			

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	Н	pH Meter
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Τ	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

APPENDIX K SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing

Unit 11

Charlwoods Road East Grinstead West Sussex

RH19 2HU

SPT Hammer Ref: RR14.

Test Date:

01/08/2022

Report Date:

02/08/2022

63.5

File Name:

RR14..spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

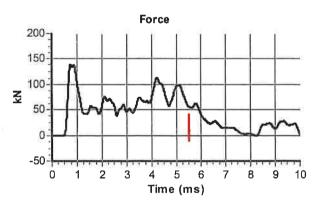
54

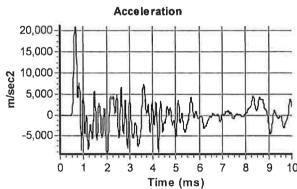
Wall Thickness t_r (mm):

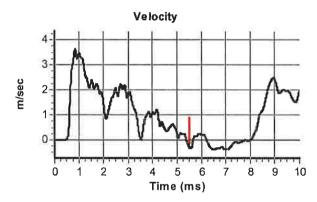
6.7

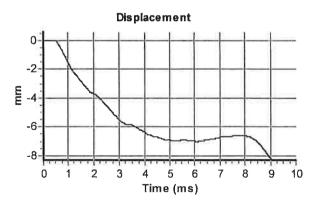
Assumed Modulus Ea (GPa): 208

Accelerometer No.1: Accelerometer No.2: 64786 64789 SPT Hammer Information


Hammer Mass m (kg):


Falling Height h (mm): 760


SPT String Length L (m): 11.0


Comments / Location

CAUSEWAY

Calculations

Area of Rod A (mm2):

996

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas}

509

Energy Ratio E_r (%):

108

Signed: N P Burrows

Title:

Field Operations Manager

The recommended calibration interval is 12 months

APPENDIX L GROUND WATER AND GAS MONITORING RECORDS

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	17/11/2022
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	H₂S (ppm)		
Before:	986	0.1	0.2	21.1	0	0
After:	999	0.0	0.0	21.2	0	0

WP2-BH01	Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0.1	0.6	18.9	9	0	
60	0.1	0.4	19.7	7	0	
90	0.0	0.4	20.1	6	0	
120	0.0	0.3	20.2	5	0	
150	0.0	0.3	20.2	4	0	
180	0.0	0.3	20.3	4	0	
240	0.0	0.3	20.3	4	0	
300	0.0	0.3	20.4	3	0	

Flow rates				
Time (sec)	Flow (I/h)			
30	0.1			
60	0.1			
90	0.1			
120	0.1			
150	0.1			
180	0.1			
240	0.1			
300	0.2			

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.70
Sample collected (Y/N)	N
Sample depth	n/a
Depth of GW in deep standpipe	plug stuck

WP2-BH02	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.9	18.7	0	0
60	0.0	0.9	18.7	0	0
90	0.0	0.9	18.7	0	0
120	0.0	0.9	18.7	0	0
150	0.0	0.8	18.6	0	0
180	0.0	0.8	18.6	0	0
240	0.0	0.8	18.6	0	0
300	0.0	0.8	18.6	0	0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.2	
60	0.2	
90	0.2	
120	0.2	
150	0.2	
180	0.2	
240	0.2	
300	0.2	

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.05
Sample collected (Y/N)	N
Sample depth	n/a
Depth of GW in deep standpipe	9.50

WP2-BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	0.3	18.0	0.0	0.0
60	0.0	0.3	20.4	0.0	0.0
90	0.0	0.3	20.4	0.0	0.0
120	0.0	0.3	20.4	0.0	0.0
150	0.0	0.4	20.4	0.0	0.0
180	0.0	0.4	20.4	0.0	0.0
240	0.0	0.4	20.4	0.0	0.0
300	0.0	0.5	20.1	0.0	0.0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.1	
60	0.1	
90	0.1	
120	0.1	
150	0.1	
180	0.1	
240	0.1	
300	0.1	

Groundwater monitoring	mbgl
Depth to top of water	2.05
Depth to bottom of BH	2.95
Sample collected (Y/N)	N
Sample depth	n/a
Depth of GW in deep standpipe	6.89

WP2-BH04	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.1	0.3	12.9	0.0	0.0
60	0.1	0.3	9.3	0.0	0.0
90	0.1	0.3	8.7	0.0	0.0
120	0.1	0.3	8.6	0.0	0.0
150	0.1	0.4	8.6	0.0	0.0
180	0.0	0.4	8.5	0.0	0.0
240	0.0	0.4	8.5	0.0	0.0
300	0.0	0.5	8.5	0.0	0.0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.1	
60	0.1	
90	0.2	
120	0.2	
150	0.2	
180	0.2	
240	0.3	
300	0.3	

Groundwater monitoring	mbgl
Depth to top of water	1.20
Depth to bottom of BH	2.20
Sample collected (Y/N)	N
Sample depth	n/a
Depth of GW in deep standpipe	1.20

WP1_BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.1	0.3	20.9	0.0	0.0
60	0.1	0.3	20.9	0.0	0.0
90	0.1	0.3	20.9	0.0	0.0
120	0.1	0.2	20.9	0.0	0.0
150	0.1	0.2	20.9	0.0	0.0
180	0.0	0.2	20.9	0.0	0.0
240	0.0	0.2	20.9	0.0	0.0
300	0.0	0.2	20.9	0.0	0.0

Flow rates		
Time (sec)	Flow (I/h)	
30	-1.8	
60	-0.6	
90	0.1	
120	0.2	
150	0.3	
180	0.3	
240	0.3	
300	0.3	

Groundwater monitoring	mbgl
Depth to top of water	2.05
Depth to bottom of BH	2.95
Sample collected (Y/N)	N
Sample depth	n/a

Site:	Dublin Array Onshore GI	
Project No.:	21-1443E	
Date:	17/11/2022	
Weather:	Dry	
Engineer:	RW	

Equipment:	guipment: Geotechnical Instruments GA5000					
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	986	0.1	0.2	21.1	0	0
After:	999	0.0	0.0	21.2	0	0

WP1_BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	0.4	19.9	0	0
60	0.0	0.4	20.7	0	0
90	0.0	0.2	21.0	0	0
120	0.0	0.3	21.0	0	0
150	0.0	0.2	21.1	0	0
180	0.0	0.2	21.1	0	0
240	0.0	0.2	21.1	0	0
300	0.0	0.2	21.2	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	
Depth to bottom of BH	
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH06	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.1	1.8	1.6	3	0
60	0.1	1.8	0.7	3	0
90	0.1	1.8	0.5	3	0
120	0.1	1.8	0.5	3	0
150	0.1	1.8	0.5	3	0
180	0.1	1.8	0.5	3	0
240	0.1	1.7	0.4	3	0
300	0.0	1.7	0.4	3	0

Flow rates			
Time (sec)	Flow (I/h)		
30	11.2		
60	13.2		
90	14.6		
120	15.2		
150	15.6		
180	15.8		
240	16.0		
300	16.1		

Groundwater monitoring	mbgl
Depth to top of water	0.83
Depth to bottom of BH	2.30
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH08	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	3.6	3.8	0	0
60	0.0	3.6	3.4	0	0
90	0.0	3.6	3.3	0	0
120	0.0	3.6	3.2	0	0
150	0.0	3.6	3.1	0	0
180	0.0	3.7	3.1	0	0
240	0.0	3.7	3.1	0	0
300	0.0	3.7	3.0	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.2		
90	0.2		
120	0.2		
150	0.2		
180	0.2		
240	0.2		
300	0.2		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.18
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH10	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	2.0	14.8	0	0
60	0.0	2.0	15.0	0	0
90	0.0	2.0	15.2	0	0
120	0.0	1.9	15.5	0	0
150	0.0	1.9	15.7	0	0
180	0.0	1.9	15.8	0	0
240	0.0	1.8	16.0	0	0
300	0.0	1.8	16.1	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	1.91
Sample collected (Y/N)	N
Sample depth	n/a

Dry
2.70
N
n/a
6.48

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	04/01/2023
Weather:	Dry
Engineer:	MRG

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	1004	0.0	0.2	20.0	1	0
After:	1004	0.0	0.2	20.0	1	0

WP2-BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	0.7	20.7	4	0
60	0.0	0.7	20.7	4	0
90	0.0	0.8	20.6	3	0
120	0.0	0.8	20.7	3	0
150	0.0	0.8	20.4	3	0
180	0.0	0.8	20.4	3	0
240	0.0	0.8	20.4	3	0
300	0.0	0.8	20.4	2	0

low rates	
Flow (I/h)	
0.2	
0.2	
0.2	
0.2	
0.2	
0.2	
0.2	
0.2	

WP2-BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.2	20.6	0	0
60	0.0	0.2	20.6	0	0
90	0.0	0.2	20.6	0	0
120	0.0	0.3	20.7	0	0
150	0.0	0.3	20.8	0	0
180	0.0	0.3	20.8	0	0
240	0.0	0.3	20.8	0	0
300	0.0	0.3	20.8	0	0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.1	
60	0.2	
90	0.2	
120	0.2	
150	0.2	
180	0.2	
240	0.2	
300	0.2	

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.05
Sample collected (Y/N)	N
Sample depth	n/a
Depth of GW in deep standpipe	6.22

WP2_BH02 and WP2_BH04 standpipes were removed in December 2022

WP1_BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.1	20.5	1.0	0.0
60	0.0	0.3	20.5	1.0	0.0
90	0.0	0.3	20.5	1.0	0.0
120	0.0	0.2	20.5	1.0	1.0
150	0.0	0.2	20.5	1.0	1.0
180	0.0	0.2	20.5	1.0	1.0
240	0.0	0.2	20.5	1.0	0.0
300	0.0	0.2	20.5	1.0	0.0

Flow rates		
Time (sec)	Flow (I/h)	
30	2.8	
60	2.7	
90	1.2	
120	1.0	
150	1.0	
180	1.0	
240	1.0	
300	1.0	

Groundwater monitoring	mbgl
Depth to top of water	0.63
Depth to bottom of BH	2.22
Sample collected (Y/N)	N
Sample depth	n/a

Site:	Dublin Array Onshore GI		
Project No.:	21-1443E		
Date:	04/01/2023		
Weather:	Dry		
Engineer:	MRG		

Equipment:		Geotechnical	Instruments	GA5000		
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	1004	0.0	0.2	20.0	1	0
After:	1004	0.0	0.2	20.0	1	0

WP1 BH03	Gas readings				
WPI_BHUS					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	0.1	18.9	0	0
60	0.0	0.4	20.4	0	0
90	0.0	0.4	20.4	0	0
120	0.0	0.6	20.1	0	0
150	0.0	0.8	19.6	0	0
180	0.0	1.0	19.4	0	0
240	0.0	1.0	19.4	0	0
300	0.0	1.0	19.4	0	0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.1	
60	0.1	
90	0.1	
120	0.1	
150	0.1	
180	0.1	
240	0.1	
300	0.1	

Groundwater monitoring	mbgl
Depth to top of water	2.21
Depth to bottom of BH	2.30
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH06	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	1.3	14.0	3	0
60	0.0	1.3	13.9	3	0
90	0.0	1.3	13.9	3	0
120	0.0	1.3	13.8	3	0
150	0.0	1.3	13.8	3	0
180	0.0	1.3	13.8	3	0
240	0.0	1.3	13.7	3	0
300	0.0	1.3	13.7	3	0

Flow rates			
Time (sec)	Flow (I/h)		
30	-15.6		
60	-10.1		
90	-8.2		
120	-4.2		
150	-4.0		
180	-4.0		
240	-4.0		
300	-4.0		

Groundwater monitoring	mbgl
Depth to top of water	0.72
Depth to bottom of BH	2.30
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH08	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	6.4	4.4	0	0
60	0.0	6.4	4.3	0	0
90	0.0	6.4	4.3	0	0
120	0.0	6.4	4.2	0	0
150	0.0	6.5	4.1	0	0
180	0.0	6.5	4.1	0	0
240	0.0	6.5	4.1	0	0
300	0.0	6.5	4.1	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	-0.1		
60	0.0		
90	0.0		
120	0.0		
150	0.0		
180	0.0		
240	0.0		
300	0.0		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.18
Sample collected (Y/N)	N
Sample depth	n/a

WP1_BH10	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.8	20.3	0	0
60	0.0	0.8	20.2	0	0
90	0.0	0.8	20.2	0	0
120	0.0	0.8	20.2	0	0
150	0.0	0.8	20.2	0	0
180	0.0	0.8	20.2	0	0
240	0.0	0.8	20.2	0	0
300	0.0	0.8	20.2	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	1.91
Sample collected (Y/N)	N
Sample depth	n/a

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	08/02/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	1024	0.0	0.2	21.7	0	0
After:	1024	0.0	0.3	22.0	0	0

Shanganagh Cliffs

WP2-BH01		Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0.0	0.4	21.5	0	0	
60	0.0	0.3	21.5	0	0	
90	0.0	0.3	21.5	0	0	
120	0.0	0.3	21.6	0	0	
150	0.0	0.3	21.6	0	0	
180	0.0	0.2	21.6	0	0	
240	0.0	0.2	21.6	0	0	
300	0.0	0.2	21.6	0	0	

Flow rates				
Time (sec)	Flow (I/h)			
30	0.0			
60	0.1			
90	0.1			
120	0.1			
150	0.1			
180	0.1			
240	0.1			
300	0.1			

WP2-BH03	Gas readings					Flow	rates
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)	Time (sec)	Flow (I/h)
30	0.0	1.3	20.4	0	0	30	0.1
60	0.0	1.3	20.4	0	0	60	0.1
90	0.0	1.4	20.3	0	0	90	0.1
120	0.0	1.6	20.1	0	0	120	0.1
150	0.0	1.7	20.0	0	0	150	0.1
180	0.0	1.9	19.8	0	0	180	0.1
240	0.0	2.3	19.4	0	0	240	0.1
300	0.0	2.5	19.2	0	0	300	0.1

Groundwater monitoring	mbgl
Depth to top of water shallow well	No Access
Depth to bottom of BH shallow well	No Access
Install from Log	2.0
Depth to top of water shallow well	3.03
Depth to bottom of BH shallow well	7.20
Install from Log	7.5

Groundwater monitoring	mbgl
Depth to top of water shallow well	Dry
Depth to bottom of BH shallow well	3.00
Install from Log	3.0
Depth to top of water shallow well	7.10
Depth to bottom of BH shallow well	12.00
Install from Log	12.0

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	08/02/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	1024	0.0	0.2	21.7	0	0
After:	1024	0.0	0.3	22.0	0	0

Ballyogan Landfill

WP1_BH01		Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0.0	0.2	21.7	0	0	
60	0.0	0.2	21.7	0	0	
90	0.0	0.2	21.7	0	0	
120	0.0	0.2	21.7	0	0	
150	0.0	0.2	21.7	0	0	
180	0.0	0.2	21.7	0	0	
240	0.0	0.2	21.7	0	0	
300	0.0	0.2	21.7	0	0	

Flow rates				
Time (sec)	Flow (I/h)			
30	0.1			
60	0.1			
90	0.1			
120	0.1			
150	0.1			
180	0.1			
240	0.1			
300	0.1			

Groundwater monitoring	mbgl
Depth to top of water	1.5
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	3.9	12.2	0	0
60	0.0	2.5	16.2	0	0
90	0.0	4.3	12.9	0	0
120	0.0	3.8	13.6	0	0
150	0.0	2.8	15.9	0	0
180	0.0	3.0	14.7	0	0
240	0.0	3.6	13.0	0	0
300	0.0	5.7	9.9	0	0

	Flow rates					
Time (sec)	Flow (I/h)				
30		0.1				
60		0.1				
90		0.1				
120)	0.1				
150)	0.1				
180)	0.1				
240)	0.1				
300)	0.1				

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	=

WP1_BH06			Gas readings			
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	Tit
30	0.0	2.9	4.0	0	0	
60	0.0	2.9	2.7	0	0	
90	0.0	2.9	2.5	0	0	
120	0.0	2.9	2.4	0	0	
150	0.0	2.9	2.2	0	0	
180	0.0	2.9	2.0	0	0	
240	0.0	3.0	1.9	0	0	
300	0.0	3.0	1.6	0	0	

Flow rates					
Time (sec)	Flow (I/h)				
30	0.1				
60	0.1				
90	0.1				
120	0.1				
150	0.1				
180	0.1				
240	0.1				
300	0.1				

Groundwater monitoring	mbgl
Depth to top of water	2.1
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

Dry
2.2
2.0
N

WP1_BH08	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	6.1	11.6	0	0
60	0.0	6.1	10.8	0	0
90	0.0	6.2	10.7	0	0
120	0.0	6.2	10.6	0	0
150	0.0	6.2	10.5	0	0
180	0.0	6.2	10.4	0	0
240	0.0	6.3	10.3	0	0
300	0.0	6.3	10.2	0	0

Flow	Flow rates	
e (sec)	Flow (I/h)	
30	0.1	
60	0.1	
90	0.1	
120	0.2	
150	0.2	
180	0.2	
240	0.2	

WP1_BH10			Flow	rates			
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	Time (sec)	Flow (I/h)
30	0.0	0.8	21.1	0	0	30	0.1
60	0.0	0.8	21.1	0	0	60	0.1
90	0.0	0.8	21.0	0	0	90	0.1
120	0.0	0.8	21.0	0	0	120	0.1
150	0.0	0.8	21.0	0	0	150	0.1
180	0.0	0.8	21.0	0	0	180	0.1
240	0.0	0.8	21.0	0	0	240	0.1
300	0.0	0.8	20.9	0	0	300	0.1

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	=

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	09/03/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH ₄ (%) CO ₂ (%) O ₂ (%) CO (ppm) H ₂ S				H₂S (ppm)
Before:	994	0.0	0.1	19.3	0.1	0
After:	994	0.0	0.1	19.3	0.0	0

Shanganagh Cliffs

WP2-BH01		Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)		
30	0.0	0.6	20.4	4.3	0.0		
60	0.0	0.5	20.6	3.7	0.0		
90	0.0	0.5	20.7	3.0	0.0		
120	0.0	0.5	20.8	2.7	0.0	Г	
150	0.0	0.5	20.7	2.3	0.0		
180	0.0	0.4	20.8	2.3	0.0		
240	0.0	0.4	20.8	2.3	0.0		
300	0.0	0.4	20.8	1.7	0.0		

Flow rates					
Time (sec)	Flow (I/h)				
30	0.1				
60	0.2				
90	0.2				
120	0.2				
150	0.2				
180	0.2				
240	0.2				
300	0.2				

Groundwater monitoring	mbgl
Depth to top of water shallow well	No Access
Depth to bottom of BH shallow well	No Access
Install from Log	2.0
Depth to top of water deep well	2.98
Depth to bottom of BH deep well	7.14
Install from Log	7.5

WP2-BH03	Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)	
30	0.0	0.6	19.7	0.0	0.0	
60	0.0	0.6	20.5	0.0	0.0	
90	0.0	0.6	20.4	0.0	0.0	
120	0.0	0.7	20.4	0.0	0.0	
150	0.0	0.8	20.4	0.0	0.0	
180	0.0	0.9	20.3	0.0	0.0	
240	0.0	1.0	20.2	0.0	0.0	
300	0.0	1.1	20.0	0.0	0.0	

Flow	Flow rates				
Time (sec)	Flow (I/h)				
30	0.1				
60	0.1				
90	0.1				
120	0.1				
150	0.1				
180	0.1				
240	0.1				
300	0.1				

Groundwater monitoring	mbgl
Depth to top of water shallow well	Dry
Depth to bottom of BH shallow well	3.00
Install from Log	3.0
Depth to top of water shallow well	6.92
Depth to bottom of BH shallow well	12.00
Install from Log	12.0

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	09/03/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
Before:	994	0.0	0.1	19.3	0.1	0
After:	994	0.0	0.1	19.3	0.0	0

Ballyogan Landfill

WP1_BH01	Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0.0	0.2	21.0	0.3	0.0	ı
60	0.0	0.3	21.0	0.3	0.0	ıſ
90	0.0	0.3	21.0	0.3	0.0	ıſ
120	0.0	0.2	21.0	0.3	0.3	ıſ
150	0.0	0.2	21.0	0.3	0.3	
180	0.0	0.2	21.0	0.3	0.3	
240	0.0	0.2	21.0	0.3	0.0	
300	0.0	0.2	21.0	0.3	0.0	ı

Flow rates					
Time (sec)	Flow (I/h)				
30	-4.2				
60	-1.0				
90	-0.4				
120	-0.2				
150	0.0				
180	0.0				
240	0.0				
300	0.0				

Groundwater monitoring	mbgl
Depth to top of water	1.3
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	1.5	17.0	0	0
60	0.0	1.1	19.1	0	0
90	0.0	1.6	18.1	0	0
120	0.0	1.6	18.2	0	0
150	0.0	1.3	18.9	0	0
180	0.0	1.4	18.4	0	0
240	0.0	1.6	17.8	0	0
300	0.0	2.3	16.8	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH06	Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0.0	2.0	6.5	2	0	
60	0.0	2.0	5.8	2	0	
90	0.0	2.0	5.6	2	0	l
120	0.0	2.0	5.6	2	0	l
150	0.0	2.0	5.5	2	0	ı
180	0.0	2.0	5.4	2	0	
240	0.0	2.0	5.3	2	0	
300	0.0	2.0	5.2	2	0	

Flow rates				
Time (sec)	Flow (I/h)			
30	-5.4			
60	-4.8			
90	-3.1			
120	-2.5			
150	-1.5			
180	-1.0			
240	-0.5			
300	-0.5			

Groundwater monitoring	mbgl
Depth to top of water	1.3
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH08	Gas readings					
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	
30	0	5.4	6.6	0	0	. [
60	0	5.4	6.2	0	0	ı
90	0	5.4	6.1	0	0	. [
120	0	5.4	6.0	0	0	
150	0	5.4	5.9	0	0	
180	0	5.5	5.9	0	0	. [
240	0	5.5	5.8	0	0	. [
300	0	5.5	5.8	0	0	. [

ı	Flow rates			
	Time (sec)	Flow (I/h)		
	30	0.1		
	60	0.1		
	90	0.1		
	120	0.1		
	150	0.1		
	180	0.1		
	240	0.1		
	300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH10	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0	1.2	18.7	0	0
60	0	1.2	18.8	0	0
90	0	1.2	18.8	0	0
120	0	1.2	18.9	0	0
150	0	1.2	19.0	0	0
180	0	1.2	19.0	0	0
240	0	1.1	19.1	0	0
300	0	1.1	19.1	0	0

Flow rates			
Time (sec) Flow (I/h)			
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	06/04/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
Before:	1001	0.0	0.2	20.1	0	0
After:	1001	0.0	0.2	20.1	0	0

Shanganagh Cliffs

WP2-BH01		Gas readings			
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	1.3	18.9	3.7	0.0
60	0.0	1.2	19.1	3.1	0.0
90	0.0	1.3	19.2	2.6	0.0
120	0.0	1.3	19.2	2.3	0.0
150	0.0	1.4	19.0	2.1	0.0
180	0.0	1.3	19.1	2.1	0.0
240	0.0	1.3	19.1	2.1	0.0
300	0.0	1.3	19.1	1.5	0.0

Flow rates					
Time (sec)	Flow (I/h)				
30	0.1				
60	0.2				
90	0.2				
120	0.2				
150	0.2				
180	0.2				
240	0.2				
300	0.2				

Groundwater monitoring	mbgl
Depth to top of water shallow well	No Access
Depth to bottom of BH shallow well	No Access
Install from Log	2.0
Depth to top of water deep well	2.98
Depth to bottom of BH deep well	7.14
Install from Log	7.5

WP2-BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	1.5	18.5	0.0	0.0
60	0.0	1.5	19.1	0.0	0.0
90	0.0	1.6	18.9	0.0	0.0
120	0.0	1.6	19.0	0.0	0.0
150	0.0	1.7	19.0	0.0	0.0
180	0.0	1.8	18.9	0.0	0.0
240	0.0	1.9	18.8	0.0	0.0
300	0.0	1.9	18.7	0.0	0.0

Flow rates				
Time (sec)	Flow (I/h)			
30	0.1			
60	0.1			
90	0.1			
120	0.1			
150	0.1			
180	0.1			
240	0.1			
300	0.1			

Groundwater monitoring	mbgl
Depth to top of water shallow well	Dry
Depth to bottom of BH shallow well	3.00
Install from Log	3.0
Depth to top of water shallow well	6.40
Depth to bottom of BH shallow well	12.00
Install from Log	12.0

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	06/04/2023
Weather:	Dry
Engineer:	RW

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
Before:	1001	0.0	0.2	20.1	0	0
After:	1001	0.0	0.2	20.1	0	0

Ballyogan Landfill

WP1_BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.2	20.8	0.3	0.0
60	0.0	0.2	20.8	0.3	0.0
90	0.0	0.2	20.8	0.3	0.0
120	0.0	0.2	20.8	0.3	0.3
150	0.0	0.2	20.8	0.3	0.3
180	0.0	0.2	20.8	0.3	0.3
240	0.0	0.2	20.8	0.3	0.0
300	0.0	0.2	20.8	0.3	0.0

Flow rates				
Time (sec)	Flow (I/h)			
30	-4.2			
60	-1.0			
90	-0.4			
120	-0.2			
150	0.0			
180	0.0			
240	0.0			
300	0.0			

Groundwater monitoring	mbgl
Depth to top of water	1.3
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH03	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	1.2	17.5	0.0	0.0
60	0.0	0.9	19.2	0.0	0.0
90	0.0	1.3	18.5	0.0	0.0
120	0.0	1.3	18.6	0.0	0.0
150	0.0	1.1	19.1	0.0	0.0
180	0.0	1.2	18.7	0.0	0.0
240	0.0	1.3	18.2	0.0	0.0
300	0.0	1.9	17.4	0.0	0.0

Flow rates			
Time (sec) Flow (I/I			
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH06	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	2.2	5.5	1.6	0.0
60	0.0	2.2	4.8	1.6	0.0
90	0.0	2.2	4.7	1.6	0.0
120	0.0	2.2	4.7	1.6	0.0
150	0.0	2.2	4.6	1.6	0.0
180	0.0	2.2	4.5	1.6	0.0
240	0.0	2.2	4.5	1.6	0.0
300	0.0	2.2	4.4	1.6	0.0

Flow rates			
Time (sec)	Flow (I/h)		
30	-5.4		
60	-4.8		
90	-3.1		
120	-2.5		
150	-1.5		
180	-1.0		
240	-0.5		
300	-0.5		

Groundwater monitoring	mbgl
Depth to top of water	0.8
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH08	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	5.0	6.5	0.0	0.0
60	0.0	5.0	6.0	0.0	0.0
90	0.0	5.0	5.7	0.0	0.0
120	0.0	5.0	5.4	0.0	0.0
150	0.0	5.0	5.3	0.0	0.0
180	0.0	5.1	5.2	0.0	0.0
240	0.0	5.1	5.2	0.0	0.0
300	0.0	5.1	5.2	0.0	0.0

Flow rates				
Time (sec)	Flow (I/h)			
30	0.1			
60	0.1			
90	0.1			
120	0.1			
150	0.1			
180	0.1			
240	0.1			
300	0.1			

Time (sec) Flow (I/h)
30 0.1

0.1

0.1

0.1

0.1

0.1

0.1

60

90

120

150

180

240

300

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH10	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	1.0	18.7	0.0	0.0
60	0.0	1.0	18.8	0.0	0.0
90	0.0	1.0	18.8	0.0	0.0
120	0.0	1.0	18.9	0.0	0.0
150	0.0	1.0	18.9	0.0	0.0
180	0.0	1.0	18.9	0.0	0.0
240	0.0	1.0	19.0	0.0	0.0
300	0.0	1.0	19.0	0.0	0.0

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	05/05/2023
Weather:	Dry
Engineer:	MRG

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
Before:	1007	0.0	0.1	19.8	1	0
After:	1007	0.0	0.1	19.8	0	0

Shanganagh Cliffs

WP2-BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	4.2	13.2	1	0
60	0.0	4.3	13.0	1	0
90	0.0	4.4	12.9	1	0
120	0.0	4.5	12.5	1	0
150	0.0	4.9	12.3	1	0
180	0.0	5.0	12.4	1	0
240	0.0	5.0	12.4	1	0
300	0.0	5.0	12.4	1	0

Flow rates					
Time (sec)	Flow (I/h)				
30	0.1				
60	0.2				
90	0.2				
120	0.2				
150	0.2				
180	0.2				
240	0.2				
300	0.2				

Groundwater monitoring	mbgl
Depth to top of water shallow well	No Access
Depth to bottom of BH shallow well	No Access
Install from Log	2.0
Depth to top of water deep well	2.46
Depth to bottom of BH deep well	7.14
Install from Log	7.5

WP2-BH03			Gas readings		
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	5.2	13.6	0	0
60	0.0	5.3	13.4	0	0
90	0.0	5.3	13.0	0	0
120	0.0	5.3	13.4	0	0
150	0.0	5.3	13.4	0	0
180	0.0	5.3	13.4	0	0
240	0.0	5.3	13.4	0	0
300	0.0	5.3	13.4	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water shallow well	Dry
Depth to bottom of BH shallow well	3.00
Install from Log	3.0
Depth to top of water shallow well	6.33
Depth to bottom of BH shallow well	12.00
Install from Log	12.0

Site:	Dublin Array Onshore GI
Project No.:	21-1443E
Date:	05/05/2023
Weather:	Dry
Engineer:	MRG

Equipment:		Geotechnical Instruments GA5000				
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
Before:	1007	0.0	0.1	19.8	1	0
After:	1007	0.0	0.1	19.8	0	0

Ballyogan Landfill

WP1_BH01	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)
30	0.0	0.1	20.1	0	0
60	0.0	0.1	20.1	0	0
90	0.0	0.1	20.1	0	0
120	0.0	0.1	20.1	0	0
150	0.0	0.1	20.1	0	0
180	0.0	0.1	20.1	0	0
240	0.0	0.1	20.1	0	0
300	0.0	0.1	20.1	0	0

Flow rates				
Time (sec)	Flow (I/h)			
30	-4.2			
60	-1.0			
90	-0.4			
120	-0.2			
150	0.0			
180	0.0			
240	0.0			
300	0.0			

Groundwater monitoring	mbgl
Depth to top of water	0.7
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH03		Gas readings			
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.3	19.5	0	0
60	0.0	0.2	19.8	0	0
90	0.0	0.2	19.9	0	0
120	0.0	0.2	20.1	0	0
150	0.0	0.2	20.0	0	0
180	0.0	0.2	20.0	0	0
240	0.0	0.2	19.9	0	0
300	0.0	0.2	19.9	0	0

Flow rates			
Time (sec)	Flow (I/h)		
30	0.1		
60	0.1		
90	0.1		
120	0.1		
150	0.1		
180	0.1		
240	0.1		
300	0.1		

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH06	Gas readings				
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	2.8	1.2	0	0
60	0.0	2.8	1.0	0	0
90	0.0	2.8	1.0	0	0
120	0.0	2.8	1.0	0	0
150	0.0	2.8	1.0	0	0
180	0.0	2.8	1.0	0	0
240	0.0	2.8	1.0	0	0
300	0.0	2.8	1.0	0	0

Flow	Flow rates			
Time (sec)	Flow (I/h)			
30	-5.4			
60	-4.8			
90	-3.1			
120	-2.5			
150	-1.5			
180	-1.0			
240	-0.5			
300	-0.5			

Groundwater monitoring	mbgl
Depth to top of water	0.7
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH08		Gas readings				
Time (sec)	CH ₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)	Ti
30	0.0	3.5	6.0	0	0	
60	0.0	3.5	5.5	0	0	
90	0.0	3.5	4.1	0	0	
120	0.0	3.5	3.1	0	0	
150	0.0	3.5	2.8	0	0	
180	0.0	3.5	2.7	0	0	
240	0.0	3.5	2.7	0	0	
300	0.0	3.5	2.7	0	0	

	Flow rates		
	Time (sec)	Flow (I/h)	
	30	0.1	
	60	0.1	
	90	0.1	
	120	0.1	
	150	0.1	
I	180	0.1	
	240	0.1	
	300	0.1	

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.2
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

WP1_BH10			Gas readings		
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)
30	0.0	0.4	18.7	0	0
60	0.0	0.4	18.7	0	0
90	0.0	0.4	18.7	0	0
120	0.0	0.4	18.7	0	0
150	0.0	0.4	18.7	0	0
180	0.0	0.4	18.7	0	0
240	0.0	0.4	18.7	0	0
300	0.0	0.4	18.7	0	0

Flow rates		
Time (sec)	Flow (I/h)	
30	0.1	
60	0.1	
90	0.1	
120	0.1	
150	0.1	
180	0.1	
240	0.1	
300	0.1	

Groundwater monitoring	mbgl
Depth to top of water	Dry
Depth to bottom of BH	2.1
Install from Log	2.0
Sample collected (Y/N)	N
Sample depth	-

APPENDIX M VARIABLE HEAD TESTING

Project Name:DUB ARRBorehole No.:WP1-BH01Project No.:21-1443ETest No.:1

Type of test: Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	1.00m
Depth to bottom of casing below ground level:	2.50m
Depth to bottom of borehole below ground level:	3.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	1.90m

Test Date: 22/09/2022

DATUM: Water level measured from top of casing, i.e. SWL is 2.90m below datum

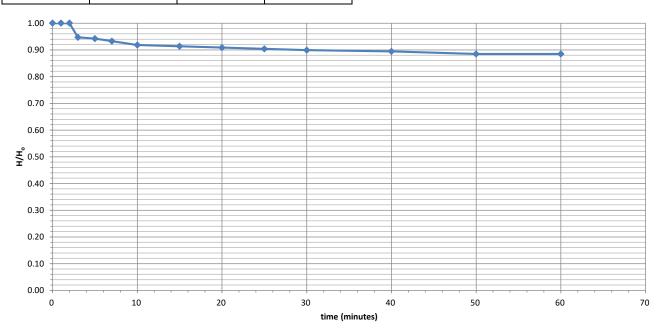
DATUM: water level measured from top of casing, i.e. SWL is 2.90m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	Н/Но	
0	0.82	2.08	1.00	
1	0.82	2.08	1.00	
2	0.82	2.08	1.00	
3	0.93	1.97	0.95	
5	0.94	1.96	0.94	
7	0.96	1.94	0.93	
10	0.99	1.91	0.92	
15	1.00	1.90	0.91	
20	1.01	1.89	0.91	
25	1.02	1.88	0.90	
30	1.03	1.87	0.90	
40	1.04	1.86	0.89	
50	1.06	1.84	0.88	
60	1.06	1.84	0.88	

CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil


A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)

Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 2.08 \text{ (m)}$
 $h_2 = 0.77 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = N/A \text{ (s)}$

Project Name:DUB ARRBorehole No.:WP1-BH01Project No.:21-1443ETest No.:2

Test Date: 22/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	7.50m
Depth to bottom of borehole below ground level:	8.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	Dry

DATUM: Water level measured from top of casing, i.e. SWL is 8.50m below datum

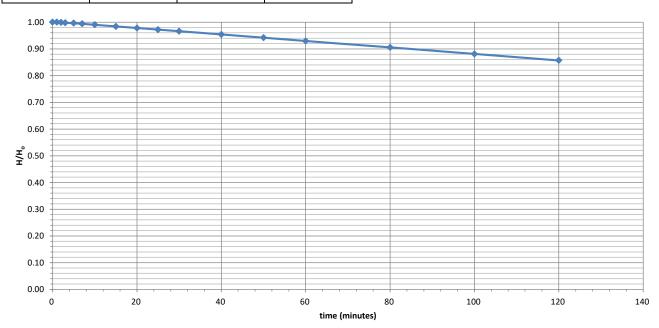
Birrow. Water level measured from top of casing, i.e. SWE is 0.50m below datam			
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL	Н	RATIO
(mins)	(m)	(m)	Н/Но
0	0.25	8.25	1.00
1	0.25	8.25	1.00
2	0.26	8.24	1.00
3	0.27	8.23	1.00
5	0.28	8.22	1.00
7	0.30	8.20	0.99
10	0.33	8.17	0.99
15	0.38	8.12	0.98
20	0.43	8.07	0.98
25	0.48	8.02	0.97
30	0.53	7.97	0.97
40	0.63	7.87	0.95
50	0.73	7.77	0.94
60	0.83	7.67	0.93
80	1.03	7.47	0.91
100	1.23	7.27	0.88
120	1.43	7.07	0.86

CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil


A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)

Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 8.25 \text{ (m)}$
 $h_2 = 3.05 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = N/A \text{ (s)}$

Project Name:DUB ARRBorehole No.:WP1-BH03Project No.:21-1443ETest No.:1

Test Date: 30/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	1.00m
Depth to bottom of casing below ground level:	2.50m
Depth to bottom of borehole below ground level:	3.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	1.20m

DATUM: Water level measured from top of casing, i.e. SWL is 2.20m below datum

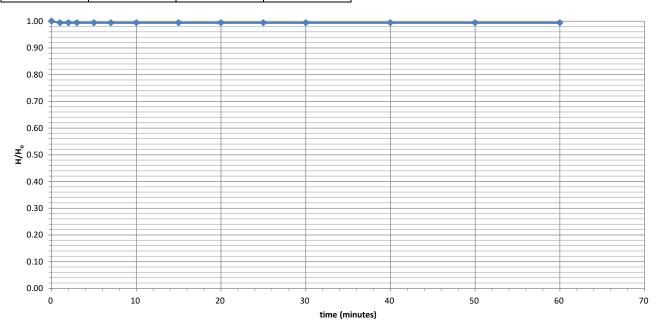
DATOM: Water level measured from top of casing, i.e. SWL is 2.20th below datum			
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL	Н	RATIO
(mins)	(m)	(m)	Н/Но
0	0.50	1.70	1.00
1	0.51	1.69	0.99
2	0.51	1.69	0.99
3	0.51	1.69	0.99
5	0.51	1.69	0.99
7	0.51	1.69	0.99
10	0.51	1.69	0.99
15	0.51	1.69	0.99
20	0.51	1.69	0.99
25	0.51	1.69	0.99
30	0.51	1.69	0.99
40	0.51	1.69	0.99
50	0.51	1.69	0.99
60	0.51	1.69	0.99

CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil


A is the cross-section area of borehole/standpipe F is the shape factor (see below) n_1 and n_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)

Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 1.70 \text{ (m)}$
 $h_2 = 0.63 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = N/A \text{ (s)}$

Project Name: DUB ARR
Project No.: 21-1443E

Borehole No.: WP1-BH03
Test No.: 2

Test Date: 30/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	7.50m
Depth to bottom of borehole below ground level:	8.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	0.10m

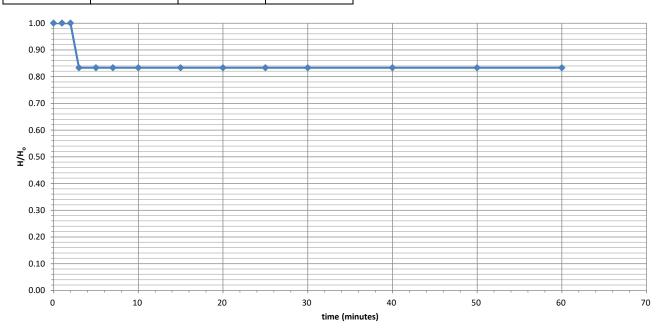
DATUM: Water level measured from top of casing, i.e. SWL is 0.60m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 0.60m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	Н/Но	
0	0.42	0.18	1.00	
1	0.42	0.18	1.00	
2	0.42	0.18	1.00	
3	0.45	0.15	0.83	
5	0.45	0.15	0.83	
7	0.45	0.15	0.83	
10	0.45	0.15	0.83	
15	0.45	0.15	0.83	
20	0.45	0.15	0.83	
25	0.45	0.15	0.83	
30	0.45	0.15	0.83	
40	0.45	0.15	0.83	
50	0.45	0.15	0.83	
60	0.45	0.15	0.83	

CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$


where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)

Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

Project Name: DUB ARRBorehole No.: WP2-BH01Project No.: 21-1443ETest No.: 1

Test Date: 19/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	1.00m
Depth to bottom of casing below ground level:	2.50m
Depth to bottom of borehole below ground level:	3.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	1.30m

DATUM: Water level measured from top of casing, i.e. SWL is 2.30m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 2.30m below datum			
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL	Н	RATIO
(mins)	(m)	(m)	H/Ho
0	0.95	1.35	1.00
1	0.97	1.33	0.99
2	0.99	1.31	0.97
3	1.03	1.27	0.94
5	1.08	1.22	0.90
7	1.14	1.16	0.86
10	1.26	1.04	0.77
15	1.37	0.93	0.69
20	1.48	0.82	0.61
25	1.58	0.72	0.53
30	1.68	0.62	0.46
35	1.78	0.52	0.39
40	1.98	0.32	0.24
50	2.19	0.11	0.08
60	2.30	0.00	0.00

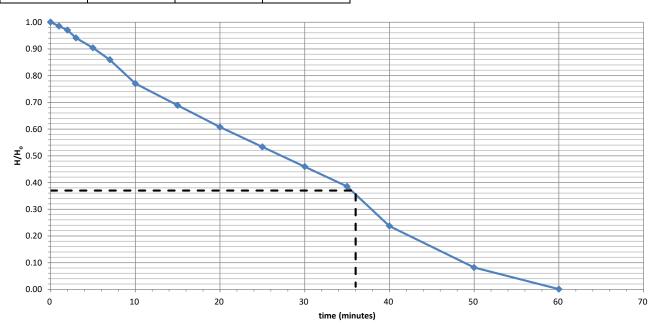
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) $h_{\,1}$ and $h_{\,2}$ are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 1.35 \text{ (m)}$
 $h_2 = 0.50 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 2160 \text{ (s)}$

hence, k = 6.34E-06 m/s

Project Name:DUB ARRBorehole No.:WP2-BH01Project No.:21-1443ETest No.:2

Test Date: 19/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	7.50m
Depth to bottom of borehole below ground level:	8.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	2.62m

DATUM: Water level measured from top of casing, i.e. SWL is 3.12m below datum

DATUM: water level measured from top of casing, i.e. SWL is 3.12m below datum			
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL	Н	RATIO
(mins)	(m)	(m)	H/Ho
0	0.34	2.78	1.00
1	0.34	2.78	1.00
2	0.54	2.58	0.93
3	0.74	2.38	0.86
5	1.04	2.08	0.75
7	1.29	1.83	0.66
10	1.65	1.47	0.53
15	1.98	1.14	0.41
20	2.25	0.87	0.31
25	2.45	0.67	0.24
30	2.58	0.54	0.19
35	2.65	0.47	0.17
40	2.74	0.38	0.14
50	2.84	0.28	0.10
60	2.94	0.18	0.06
80	3.12	0.00	0.00

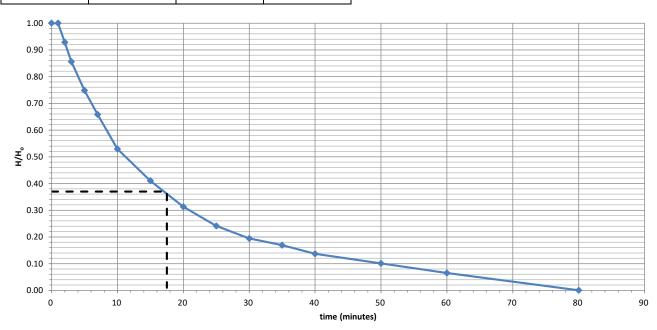
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) $h_{\,1}$ and $h_{\,2}$ are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 2.78 \text{ (m)}$
 $h_2 = 1.03 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 1050 \text{ (s)}$

hence, k = 1.30E-05 m/s

Project Name: DUB ARRBorehole No.: WP2-BH01Project No.: 21-1443ETest No.: 3

Test Date: 19/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	13.50m
Depth to bottom of borehole below ground level:	14.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	4.13m

DATUM: Water level measured from top of casing, i.e. SWL is 4.63m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 4.63m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	H/Ho	
0	0.74	3.89	1.00	
1	0.74	3.89	1.00	
2	1.14	3.49	0.90	
3	1.46	3.17	0.81	
5	1.95	2.68	0.69	
7	2.37	2.26	0.58	
10	2.75	1.88	0.48	
15	3.30	1.33	0.34	
20	3.74	0.89	0.23	
25	4.01	0.62	0.16	
30	4.24	0.39	0.10	
35	4.44	0.19	0.05	
40	4.55	0.08	0.02	
50	4.63	0.00	0.00	
60	4.63	0.00	0.00	

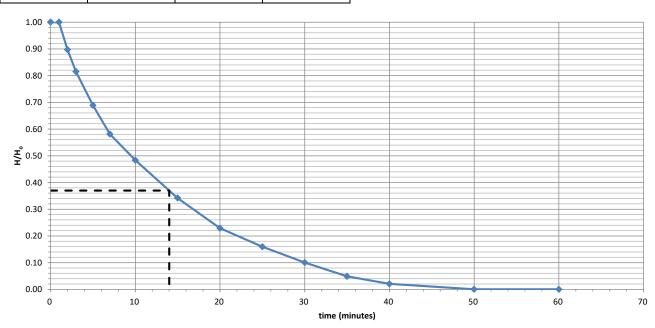
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) n_1 and n_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 3.89 \text{ (m)}$
 $h_2 = 1.44 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 840 \text{ (s)}$

hence, k = 1.63E-05 m/s

Project Name:DUB ARRBorehole No.:WP2-BH02Project No.:21-1443ETest No.:1

Test Date: 13/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	1.00m
Depth to bottom of casing below ground level:	2.50m
Depth to bottom of borehole below ground level:	3.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	3.35m

DATUM: Water level measured from top of casing, i.e. SWL is 4.35m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 4.35m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	H/Ho	
0	1.00	3.35	1.00	
1	1.50	2.85	0.85	
2	2.20	2.15	0.64	
3	2.60	1.75	0.52	
5	3.10	1.25	0.37	
7	3.25	1.10	0.33	
10	3.35	1.00	0.30	
15	3.35	1.00	0.30	

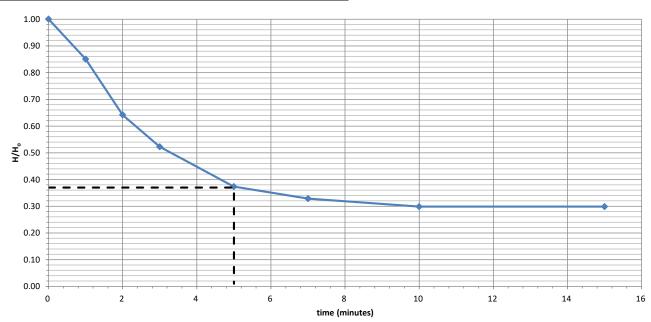
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) n_1 and n_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 3.35 \text{ (m)}$
 $h_2 = 1.24 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 300 \text{ (s)}$

hence, k = 4.57E-05 m/s

Project Name:DUB ARRBorehole No.:WP2-BH02Project No.:21-1443ETest No.:2

Test Date: 13/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	7.50m
Depth to bottom of borehole below ground level:	8.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	2.88m

DATUM: Water level measured from top of casing, i.e. SWL is 3.38m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 3.38m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	H/Ho	
0	1.58	1.80	1.00	
2	2.17	1.21	0.67	
3	2.47	0.91	0.51	
5	2.88	0.50	0.28	
7	3.01	0.37	0.21	
10	3.07	0.31	0.17	
15	3.11	0.27	0.15	
20	3.16	0.22	0.12	
25	3.20	0.18	0.10	
30	3.25	0.13	0.07	
35	3.30	0.08	0.04	
40	3.38	0.00	0.00	
50	3.38	0.00	0.00	

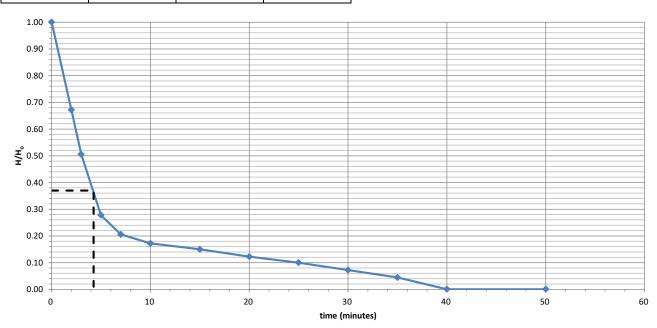
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) $h_{\,1}$ and $h_{\,2}$ are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 1.80 \text{ (m)}$
 $h_2 = 0.67 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 255 \text{ (s)}$

hence, k = 5.37E-05 m/s

Project Name:DUB ARRBorehole No.:WP2-BH03Project No.:21-1443ETest No.:1

Test Date: 09/09/2022 **Type of test:** Falling Head

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	19.50m
Depth to bottom of borehole below ground level:	20.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	7.85m

DATUM: Water level measured from top of casing, i.e. SWL is 8.35m below datum

DATOM: Water level measured from top of casing, i.e. SWL is 0.55m below datum				
WATER	HEAD	HEAD		
LEVEL	Н	RATIO		
(m)	(m)	H/Ho		
0.00	8.35	1.00		
0.46	7.89	0.94		
0.90	7.45	0.89		
1.32	7.03	0.84		
2.09	6.26	0.75		
2.82	5.53	0.66		
3.78	4.57	0.55		
5.25	3.10	0.37		
6.61	1.74	0.21		
7.90	0.45	0.05		
8.34	0.01	0.00		
8.35	0.00	0.00		
8.35	0.00	0.00		
8.35	0.00	0.00		
8.35	0.00	0.00		
8.36	0.01	0.00		
8.36	0.01	0.00		
	WATER LEVEL (m) 0.00 0.46 0.90 1.32 2.09 2.82 3.78 5.25 6.61 7.90 8.34 8.35 8.35 8.35 8.35 8.35 8.35	WATER LEVEL H (m) (m) 0.00 8.35 0.46 7.89 0.90 7.45 1.32 7.03 2.09 6.26 2.82 5.53 3.78 4.57 5.25 3.10 6.61 1.74 7.90 0.45 8.34 0.01 8.35 0.00 8.35 0.00 8.35 0.00 8.35 0.00 8.36 0.01		

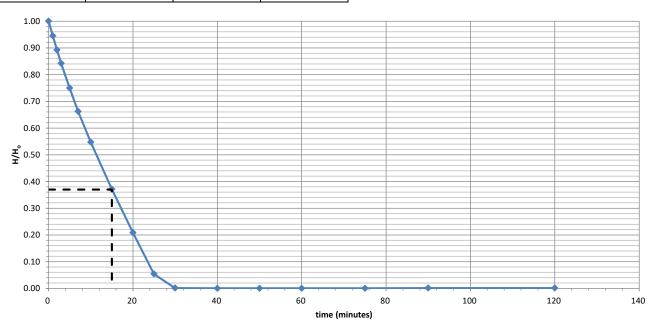
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) $h_{\,1}$ and $h_{\,2}$ are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 8.35 \text{ (m)}$
 $h_2 = 3.09 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 900 \text{ (s)}$

hence, k = 1.52E-05 m/s

Project Name: DUB ARR
Project No.: 21-1443E

Borehole No.: WP2-BH04
Test No.: 1

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	1.00m
Depth to bottom of casing below ground level:	2.50m
Depth to bottom of borehole below ground level:	3.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	1.22m

DATUM: Water level measured from top of casing, i.e. SWL is 2.22m below datum

DATUM: Water level measured from top of casing, i.e. SWL is 2.22m below datum				
TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL	Н	RATIO	
(mins)	(m)	(m)	H/Ho	
0	0.00	2.22	1.00	
1	0.72	1.50	0.68	
2	0.90	1.32	0.59	
3	0.91	1.31	0.59	
5	1.04	1.18	0.53	
7	1.07	1.15	0.52	
10	1.10	1.12	0.50	
15	1.13	1.09	0.49	
20	1.16	1.06	0.48	
30	1.20	1.02	0.46	
35	1.22	1.00	0.45	
40	1.24	0.98	0.44	
50	1.27	0.95	0.43	
60	1.33	0.89	0.40	
80	1.40	0.82	0.37	
100	1.47	0.75	0.34	
120	1.52	0.70	0.32	

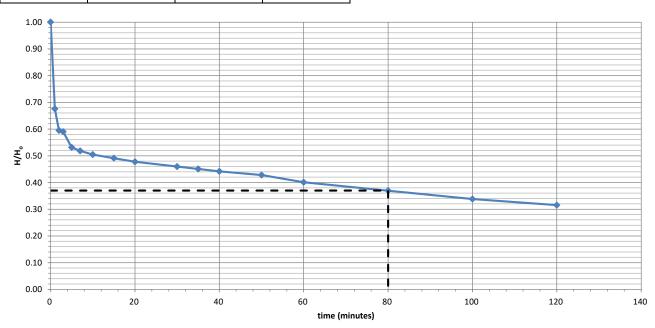
CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil

A is the cross-section area of borehole/standpipe F is the shape factor (see below) n_1 and n_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)


Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1}))$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 2.22 \text{ (m)}$
 $h_2 = 0.82 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = 4800 \text{ (s)}$

hence, k = 2.85E-06 m/s

Project Name:DUB ARRBorehole No.:WP2-BH04Project No.:21-1443ETest No.:2

Diameter of casing (D):	0.18m
Height of top of casing above ground level:	0.50m
Depth to bottom of casing below ground level:	7.50m
Depth to bottom of borehole below ground level:	8.00m
Length of the test section (L):	0.50m
Standing ground water level (SWL) below ground level:	2.65m

DATUM: Water level measured from top of casing, i.e. SWL is 3.15m below datum

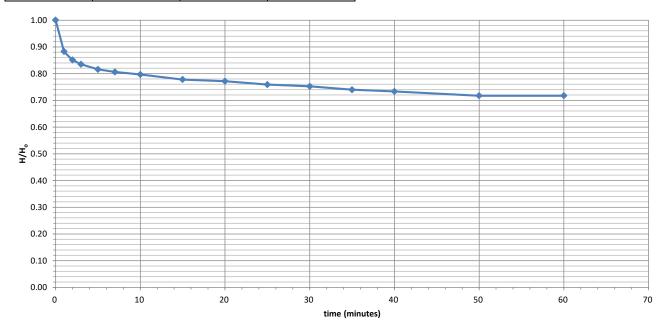
DATOM: water level measured from top of casing, i.e. SWL is 5.15m below datum			
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL	Н	RATIO
(mins)	(m)	(m)	Н/Но
0	0.00	3.15	1.00
1	0.37	2.78	0.88
2	0.47	2.68	0.85
3	0.52	2.63	0.83
5	0.58	2.57	0.82
7	0.61	2.54	0.81
10	0.64	2.51	0.80
15	0.70	2.45	0.78
20	0.72	2.43	0.77
25	0.76	2.39	0.76
30	0.78	2.37	0.75
35	0.82	2.33	0.74
40	0.84	2.31	0.73
50	0.89	2.26	0.72
60	0.89	2.26	0.72

CALCULATION OF PERMEABILITY:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where: k is the permeability of soil


A is the cross-section area of borehole/standpipe F is the shape factor (see below) n_1 and n_2 are the hydraulic heads measured respectively at the times t1 (start of test) and t2 (0.37 head reached)

Values for the shape factor (F) are given for various conditions (cases A-E) in Annex B of BS EN ISO 22282-1:2012

L/D is 2.8, so Case D is assumed, therefore:

$$F=(2*\pi*L)/(LN((L/D)+\sqrt{((L/D)^2)+1)})$$

i.e.
$$F = 1.78 \text{ (m)}$$

 $A = 0.025 \text{ (m}^2)$
 $h_1 = 3.15 \text{ (m)}$
 $h_2 = 1.17 \text{ (m)}$
 $t_1 = 0 \text{ (s)}$
 $t_2 = N/A \text{ (s)}$

Registered office: Unit 5, Desart House, Lower New Street, Kilkenny

www.RWE.com